bims-tricox Biomed News
on Translation, ribosomes and COX
Issue of 2024–11–17
two papers selected by
Yash Verma, University of Zurich



  1. J Cell Biol. 2024 Dec 02. pii: e202404094. [Epub ahead of print]223(12):
      Efficient import of nuclear-encoded proteins into mitochondria is crucial for proper mitochondrial function. The conserved translation factor eIF5A binds ribosomes, alleviating stalling at polyproline-encoding sequences. eIF5A impacts mitochondrial function across species, though the precise molecular mechanism is unclear. We found that eIF5A depletion in yeast reduces the translation and levels of the TCA cycle and oxidative phosphorylation proteins. Loss of eIF5A causes mitoprotein precursors to accumulate in the cytosol and triggers a mitochondrial import stress response. We identify an essential polyproline protein as a direct target of eIF5A: the mitochondrial inner membrane protein and translocase component Tim50. Thus, eIF5A controls mitochondrial protein import by alleviating ribosome stalling along Tim50 mRNA at the mitochondrial surface. Removal of polyprolines from Tim50 partially rescues the mitochondrial import stress response and translation of oxidative phosphorylation genes. Overall, our findings elucidate how eIF5A impacts the mitochondrial function by promoting efficient translation and reducing ribosome stalling of co-translationally imported proteins, thereby positively impacting the mitochondrial import process.
    DOI:  https://doi.org/10.1083/jcb.202404094
  2. FEBS J. 2024 Nov 14.
      Recent experimental studies indicate that mitochondria in mammalian cells are maintained at temperatures of at least 50 °C. While acknowledging the limitations of current experimental methods and their interpretation, we here consider the ramifications of this finding for cellular functions and for evolution. We consider whether mitochondria as heat-producing organelles had a role in the origin of eukaryotes and in the emergence of homeotherms. The homeostatic responses of mitochondrial temperature to externally applied heat imply the existence of a molecular heat-sensing system in mitochondria. While current findings indicate high temperatures for the innermost compartments of mitochondria, those of the mitochondrial surface and of the immediately surrounding cytosol remain to be determined. We ask whether some aspects of mitochondrial dynamics and motility could reflect changes in the supply and demand for mitochondrial heat, and whether mitochondrial heat production could be a factor in diseases and immunity.
    Keywords:  cold‐shock; eukaryote origins; heat‐shock; homeothermy; immunity; mitochondria; mitochondrial disease; mitochondrial dynamics; temperature gradients; thermogenesis
    DOI:  https://doi.org/10.1111/febs.17316