bims-tricox Biomed News
on Translation, ribosomes and COX
Issue of 2025–02–23
two papers selected by
Yash Verma, University of Zurich



  1. bioRxiv. 2025 Jan 31. pii: 2025.01.30.635641. [Epub ahead of print]
      Mitochondrial gene expression needs to be balanced with cytosolic translation to produce oxidative phosphorylation complexes. In yeast, translational feedback loops involving lowly expressed proteins called translational activators help to achieve this balance. Synthesis of cytochrome b (Cytb or COB), a core subunit of complex III in the respiratory chain, is controlled by three translational activators and the assembly factor Cbp3-Cbp6. However, the molecular interface between the COB translational feedback loop and complex III assembly is yet unknown. Here, using protein-proximity mapping combined with selective mitoribosome profiling, we reveal the components and dynamics of the molecular switch controlling COB translation. Specifically, we demonstrate that Mrx4, a previously uncharacterized ligand of the mitoribosomal polypeptide tunnel exit, interacts with either the assembly factor Cbp3-Cbp6 or with the translational activator Cbs2. These reciprocal interactions determine whether the translational activator complex with bound COB mRNA can interact with the mRNA channel exit on the small ribosomal subunit for translation initiation. Organization of the feedback loop at the tunnel exit therefore orchestrates mitochondrial translation with respiratory chain biogenesis.
    DOI:  https://doi.org/10.1101/2025.01.30.635641
  2. bioRxiv. 2025 Jan 30. pii: 2025.01.30.635785. [Epub ahead of print]
      The mitochondrial inner membrane is among the most protein-dense cellular membranes. Its functional integrity is maintained through a concerted action of several conserved mechanisms that are far from clear. Here, using the baker's yeast model, we functionally characterize Mdm38/LETM1, a disease-related protein implicated in mitochondrial translation and ion homeostasis, although the molecular basis of these connections remains elusive. Our findings reveal a novel role for Mdm38 in maintaining protein homeostasis within the inner membrane. Specifically, we demonstrate that Mdm38 is required for mitochondrial iron homeostasis and for signaling iron bioavailability from mitochondria to vacuoles. These processes are linked to the m- AAA quality control protease, whose unrestrained activity disrupts the assembly and stability of respiratory chain complexes in Mdm38-deficient cells. Our study highlights the central role of Mdm38 in mitochondrial biology and reveals how it couples proteostatic mechanisms to ion homeostasis across subcellular compartments.
    DOI:  https://doi.org/10.1101/2025.01.30.635785