bims-trytim Biomed News
on Tryptophan metabolism in tumour-immune microenvironment
Issue of 2024–04–21
37 papers selected by
Jialin Feng, University of Dundee



  1. Immunol Invest. 2024 Apr 18. 1-22
       BACKGROUND: Glioblastoma (GBM) is an extremely aggressive form of brain tumor with low survival rates. Current treatments such as chemotherapy, radiation, and surgery are problematic due to tumor growth, invasion, and tumor microenvironment. GBM cells are resistant to these standard treatments, and the heterogeneity of the tumor makes it difficult to find a universal approach. Progression of GBM and acquisition of resistance to therapy are due to the complex interplay between tumor cells and the TME. A significant portion of the TME consists of an inflammatory infiltrate, with microglia and macrophages being the predominant cells.
    METHODS: Analysis of the literature data over a course of 5 years suggest that the tumor-associated macrophages (TAMs) are capable of releasing cytokines and growth factors that promote tumor proliferation, survival, and metastasis while inhibiting immune cell function at the same time.
    RESULTS: Thus, immunosuppressive state, provided with this intensively studied kind of TME cells, is supposed to promote GBM development through TAMs modulation of tumor treatment-resistance and aggressiveness. Therefore, TAMs are an attractive therapeutic target in the treatment of glioblastoma.
    CONCLUSION: This review provides a comprehensive overview of the latest research on the nature of TAMs and the development of therapeutic strategies targeting TAMs, focusing on the variety of macrophage properties, being modulated, as well as molecular targets.
    Keywords:  Glioblastoma; immunotherapy; macrophage; tumor resistance
    DOI:  https://doi.org/10.1080/08820139.2024.2337022
  2. Nat Commun. 2024 Apr 15. 15(1): 3226
    iMAXT Consortium
      The tumor microenvironment plays a crucial role in determining response to treatment. This involves a series of interconnected changes in the cellular landscape, spatial organization, and extracellular matrix composition. However, assessing these alterations simultaneously is challenging from a spatial perspective, due to the limitations of current high-dimensional imaging techniques and the extent of intratumoral heterogeneity over large lesion areas. In this study, we introduce a spatial proteomic workflow termed Hyperplexed Immunofluorescence Imaging (HIFI) that overcomes these limitations. HIFI allows for the simultaneous analysis of > 45 markers in fragile tissue sections at high magnification, using a cost-effective high-throughput workflow. We integrate HIFI with machine learning feature detection, graph-based network analysis, and cluster-based neighborhood analysis to analyze the microenvironment response to radiation therapy in a preclinical model of glioblastoma, and compare this response to a mouse model of breast-to-brain metastasis. Here we show that glioblastomas undergo extensive spatial reorganization of immune cell populations and structural architecture in response to treatment, while brain metastases show no comparable reorganization. Our integrated spatial analyses reveal highly divergent responses to radiation therapy between brain tumor models, despite equivalent radiotherapy benefit.
    DOI:  https://doi.org/10.1038/s41467-024-47185-9
  3. Neurooncol Adv. 2024 Jan-Dec;6(1):6(1): vdae005
       Background: Non-enhancing (NE) infiltrating tumor cells beyond the contrast-enhancing (CE) bulk of tumor are potential propagators of recurrence after gross total resection of high-grade glioma.
    Methods: We leveraged single-nucleus RNA sequencing on 15 specimens from recurrent high-grade gliomas (n = 5) to compare prospectively identified biopsy specimens acquired from CE and NE regions. Additionally, 24 CE and 22 NE biopsies had immunohistochemical staining to validate RNA findings.
    Results: Tumor cells in NE regions are enriched in neural progenitor cell-like cellular states, while CE regions are enriched in mesenchymal-like states. NE glioma cells have similar proportions of proliferative and putative glioma stem cells relative to CE regions, without significant differences in % Ki-67 staining. Tumor cells in NE regions exhibit upregulation of genes previously associated with lower grade gliomas. Our findings in recurrent GBM paralleled some of the findings in a re-analysis of a dataset from primary GBM. Cell-, gene-, and pathway-level analyses of the tumor microenvironment in the NE region reveal relative downregulation of tumor-mediated neovascularization and cell-mediated immune response, but increased glioma-to-nonpathological cell interactions.
    Conclusions: This comprehensive analysis illustrates differing tumor and nontumor landscapes of CE and NE regions in high-grade gliomas, highlighting the NE region as an area harboring likely initiators of recurrence in a pro-tumor microenvironment and identifying possible targets for future design of NE-specific adjuvant therapy. These findings also support the aggressive approach to resection of tumor-bearing NE regions.
    Keywords:  contrast enhancing; glioblastoma; magnetic resonance imaging; non-enhancing
    DOI:  https://doi.org/10.1093/noajnl/vdae005
  4. bioRxiv. 2024 Apr 03. pii: 2024.04.02.587724. [Epub ahead of print]
      Tumor metastasis, the main cause of death in cancer patients, requires outgrowth of tumor cells after their dissemination and residence in microscopic niches. Nutrient sufficiency is a determinant of such outgrowth 1 . Fatty acids (FA) can be metabolized by cancer cells for their energetic and anabolic needs but impair the cytotoxicity of T cells in the tumor microenvironment (TME) 2, 3 , thereby supporting metastatic progression. However, despite the important role of FA in metastatic outgrowth, the regulation of intratumoral FA is poorly understood. In this report, we show that tumor endothelium actively promotes tumor growth and restricts anti-tumor cytolysis by transferring FA into developing metastatic tumors. This process uses transendothelial fatty acid transport via endosome cargo trafficking in a mechanism that requires mTORC1 activity. Thus, tumor burden was significantly reduced upon endothelial-specific targeted deletion of Raptor, a unique component of the mTORC1 complex (Rptor ECKO ). In vivo trafficking of a fluorescent palmitic acid analog to tumor cells and T cells was reduced in Rptor ECKO lung metastatic tumors, which correlated with improved markers of T cell cytotoxicity. Combination of anti-PD1 with RAD001/everolimus, at a low dose that selectively inhibits mTORC1 in endothelial cells 4 , impaired FA uptake in T cells and reduced metastatic disease, corresponding to improved anti-tumor immunity. These findings describe a novel mechanism of transendothelial fatty acid transfer into the TME during metastatic outgrowth and highlight a target for future development of therapeutic strategies.
    DOI:  https://doi.org/10.1101/2024.04.02.587724
  5. Immunol Rev. 2024 Apr 17.
      Cells of the mammalian innate immune system have evolved to protect the host from various environmental or internal insults and injuries which perturb the homeostatic state of the organism. Among the lymphocytes of the innate immune system are natural killer (NK) cells, which circulate and survey host tissues for signs of stress, including infection or transformation. NK cells rapidly eliminate damaged cells in the blood or within tissues through secretion of cytolytic machinery and production of proinflammatory cytokines. To perform these effector functions while traversing between the blood and tissues, patrolling NK cells require sufficient fuel to meet their energetic demands. Here, we highlight the ability of NK cells to metabolically adapt across tissues, during times of nutrient deprivation and within tumor microenvironments. Whether at steady state, or during viral infection and cancer, NK cells readily shift their nutrient uptake and usage in order to maintain metabolism, survival, and function.
    Keywords:  NK cells; cancer; immunity; immunometabolism
    DOI:  https://doi.org/10.1111/imr.13333
  6. J Clin Invest. 2024 Apr 15. pii: e173934. [Epub ahead of print]134(8):
      Clear cell renal cell carcinoma (ccRCC) is characterized by dysregulated hypoxia signaling and a tumor microenvironment (TME) highly enriched in myeloid and lymphoid cells. Loss of the von Hippel Lindau (VHL) gene is a critical early event in ccRCC pathogenesis and promotes stabilization of HIF. Whether VHL loss in cancer cells affects immune cells in the TME remains unclear. Using Vhl WT and Vhl-KO in vivo murine kidney cancer Renca models, we found that Vhl-KO tumors were more infiltrated by immune cells. Tumor-associated macrophages (TAMs) from Vhl-deficient tumors demonstrated enhanced in vivo glucose consumption, phagocytosis, and inflammatory transcriptional signatures, whereas lymphocytes from Vhl-KO tumors showed reduced activation and a lower response to anti-programmed cell death 1 (anti-PD-1) therapy in vivo. The chemokine CX3CL1 was highly expressed in human ccRCC tumors and was associated with Vhl deficiency. Deletion of Cx3cl1 in cancer cells decreased myeloid cell infiltration associated with Vhl loss to provide a mechanism by which Vhl loss may have contributed to the altered immune landscape. Here, we identify cancer cell-specific genetic features that drove environmental reprogramming and shaped the tumor immune landscape, with therapeutic implications for the treatment of ccRCC.
    Keywords:  Cancer; Macrophages; Metabolism; Oncology; T cells
    DOI:  https://doi.org/10.1172/JCI173934
  7. Medicine (Baltimore). 2024 Apr 19. 103(16): e37820
      Aldehyde dehydrogenase 2 (ALDH2) plays a critical role in safeguarding cells against acetaldehyde toxicity and is closely linked to human metabolism. Nevertheless, the involvement of ALDH2 in cancer remains enigmatic. This investigation seeks to comprehensively assess ALDH2's significance in pan-cancer. We conducted an all-encompassing analysis of pan-cancer utilizing multiple databases, including TCGA, linkedomicshs, UALCAN, and Kaplan-Meier plotter. We employed diverse algorithms such as EPIC, MCPCOUNTER, TIDTIMER, xCell, MCP-counter, CIBERSORT, quanTIseq, and EPIC to examine the connection between ALDH2 expression and immune cell infiltration. Single-cell sequencing analysis furnished insights into ALDH2's functional status in pan-cancer. Immunohistochemical staining was performed to validate ALDH2 expression in cancer tissues. In a comprehensive assessment, we observed that tumor tissues demonstrated diminished ALDH2 expression levels compared to normal tissues across 16 different cancer types. ALDH2 expression exhibited a significant positive correlation with the infiltration of immune cells, including CD4 + T cells, CD8 + T cells, neutrophils, B cells, and macrophages, in various tumor types. Moreover, this study explored the association between ALDH2 and patient survival, examined the methylation patterns of ALDH2 in normal and primary tumor tissues, and delved into genetic variations and mutations of ALDH2 in tumors. The findings suggest that ALDH2 could serve as a valuable prognostic biomarker in pan-cancer, closely linked to the tumor's immune microenvironment.
    DOI:  https://doi.org/10.1097/MD.0000000000037820
  8. Cancer Res Commun. 2024 Apr 16.
      Naïve T cells are key players in cancer immunosurveillance, even though their function declines during tumor progression. Thus, interventions capable of sustaining the quality and function of naïve T cells are needed to improve cancer immunoprevention. In this context, we studied the capacity of Urolithin-A (UroA), a potent mitophagy inducer, to enhance T-cell mediated cancer immunosurveillance. We discovered that UroA improved the cancer immune response by activating the transcription factor FOXO1 in CD8+ T cell. Sustained FOXO1 activation promoted the expression of the adhesion molecule L-selectin (CD62L) resulting in the expansion of the Naïve T cells population. We found that UroA reduces FOXO1 phosphorylation favoring its nuclear localization and transcriptional activity. Overall, our findings determine FOXO1 as a novel molecular target of UroA in CD8+T cells and indicate UroA as promising immunomodulator to improve cancer immunosurveillance.
    DOI:  https://doi.org/10.1158/2767-9764.CRC-24-0022
  9. Cold Spring Harb Perspect Med. 2024 Apr 15. pii: a041336. [Epub ahead of print]
      Despite progress in other tumor types, immunotherapy is not yet part of the standard of care treatment for high-grade serous ovarian cancer patients. Although tumor infiltration by T cells is frequently observed in patients with ovarian cancer, clinical responses to immunotherapy remain low. Mechanisms for immune resistance in ovarian cancer have been explored and may provide insight into future approaches to improve response to immunotherapy agents. In this review, we discuss what is known about the immune landscape in ovarian cancer, review the available data for immunotherapy-based strategies in these patients, and provide possible future directions.
    DOI:  https://doi.org/10.1101/cshperspect.a041336
  10. Transl Res. 2024 Apr 11. pii: S1931-5244(24)00080-X. [Epub ahead of print]
      Cancer-associated fibroblasts (CAFs), as significant constituents of the tumor microenvironment (TME), play a pivotal role in the progression of cancers, including colorectal cancer (CRC). In this comprehensive review, we presented the origin and activation mechanisms of CAFs in CRC, elaborating on how CAFs drive tumor advancement through their interactions with CRC cells, immune cells, vascular endothelial cells, and the extracellular matrix within the tumor microenvironment. We systematically outline the intricate web of interactions among CAFs, tumor cells, and other TME components, and based on this complex interplay, we summarize various therapeutic strategies designed to target CAFs in CRC. It is also essential to recognize that CAFs represent a highly heterogeneous group, encompassing various subtypes such as myofibroblastic CAF (myCAF), inflammatory CAF (iCAF), antigen-presenting CAF (apCAF), vessel-associated CAF (vCAF). Herein, we provide a summary of studies investigating the heterogeneity of CAFs in CRC and the characteristic expression patterns of each subtype. While the majority of CAFs contribute to the exacerbation of CRC malignancy, recent findings have revealed specific subtypes that exert inhibitory effects on CRC progression. Nevertheless, the comprehensive landscape of CAF heterogeneity still awaits exploration. We also highlight pivotal unanswered questions that need to be addressed before CAFs can be recognized as feasible targets for cancer treatment. In conclusion, the aim of our review is to elucidate the significance and challenges of advancing in-depth research on CAFs, while outlining the pathway to uncover the complex roles of CAFs in CRC and underscore their significant potential as therapeutic targets.
    Keywords:  Cancer-associated fibroblast; Colorectal cancer; Heterogeneity; Therapeutic target; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.trsl.2024.04.003
  11. Heliyon. 2024 Apr 15. 10(7): e29332
      As one of the most common malignant tumors in the world, lung cancer has limited benefits for patients despite its diverse treatment methods due to factors such as personalized medicine targeting histological type, immune checkpoint expression, and driver gene mutations. The high mortality rate of lung cancer is partly due to the immune-suppressive which limits the effectiveness of anti-cancer drugs and induces tumor cell resistance. The currently widely recognized TAM phenotypes include the anti-tumor M1 and pro-tumor M2 phenotypes. M2 macrophages promote the formation of an immune-suppressive microenvironment and hinder immune cell infiltration, thereby inhibiting activation of the anti-tumor immune system and aiding tumor cells in resisting treatment. Analyzing the relationship between different treatment methods and macrophages in the TME can help us better understand the impact of TAMs on lung cancer and confirm the feasibility of targeted TAM therapy. Targeting TAMs to reduce the M2/M1 ratio and reverse the immune-suppressive microenvironment can improve the clinical efficacy of conventional treatment methods and potentially open up more efficient combination treatment strategies, maximizing the benefit for lung cancer patients.
    Keywords:  Immunomodulation lung cancer; Lung cancer therapy; Macrophage polarization; Tumor microenvironment; Tumor-associated macrophages
    DOI:  https://doi.org/10.1016/j.heliyon.2024.e29332
  12. Cancer Cell Int. 2024 Apr 17. 24(1): 140
      The mitochondrial calcium uniporter (MCU) is a transmembrane protein facilitating the entry of calcium ions into mitochondria from the cell cytosol. Maintaining calcium balance is crucial for enhancing cellular energy supply and regulating cell death. The interplay of calcium balance through MCU and the sodium-calcium exchanger is known, but its regulation in the breast cancer tumor microenvironment remains elusive. Further investigations are warranted to explore MCU's potential in BRCA clinical pathology, tumor immune microenvironment, and precision oncology. Our study, employing a multi-omics approach, identifies MCU as an independent diagnostic biomarker for breast cancer (BRCA), correlated with advanced clinical status and poor overall survival. Utilizing public datasets from GEO and TCGA, we discern differentially expressed genes in BRCA and examine their associations with immune gene expression, overall survival, tumor stage, gene mutation status, and infiltrating immune cells. Spatial transcriptomics is employed to investigate MCU gene expression in various regions of BRCA, while spatial transcriptomics and single-cell RNA-sequencing methods explore the correlation between MCUs and immune cells. Our findings are validated through the analysis of 59 BRCA patient samples, utilizing immunohistochemistry and bioinformatics to examine the relationship between MCU expression, clinicopathological features, and prognosis. The study uncovers the expression of key gene regulators in BRCA associated with genetic variations, deletions, and the tumor microenvironment. Mutations in these regulators positively correlate with different immune cells in six immune datasets, playing a pivotal role in immune cell infiltration in BRCA. Notably, high MCU performance is linked to CD8 + T cells infiltration in BRCA. Furthermore, pharmacogenomic analysis of BRCA cell lines indicates that MCU inactivation is associated with increased sensitivity to specific small molecule drugs. Our findings suggest that MCU alterations may be linked to BRCA progression, unveiling new diagnostic and prognostic implications for MCU in BRCA. The study underscores MCU's role in the tumor immune microenvironment and cell cycle progression, positioning it as a potential tool for BRCA precision medicine and drug screening.
    Keywords:  Breast cancer; Immune infiltration; MCU; Single-cell RNA-sequencing; Spatial transcriptomics
    DOI:  https://doi.org/10.1186/s12935-024-03327-z
  13. Crit Rev Oncol Hematol. 2024 Apr 11. pii: S1040-8428(24)00105-7. [Epub ahead of print] 104362
      In the tumor microenvironment (TME), myeloid cells play a pivotal role. Myeloid-derived immunosuppressive cells, including tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), are central components in shaping the immunosuppressive milieu of the tumor. Within the TME, a majority of TAMs assume an M2 phenotype, characterized by their pro-tumoral activity. These cells promote tumor cell growth, angiogenesis, invasion, and migration. In contrast, M1 macrophages, under appropriate activation conditions, exhibit cytotoxic capabilities against cancer cells. However, an excessive M1 response may lead to pro-tumoral inflammation. As a result, myeloid cells have emerged as crucial targets in cancer therapy. This review concentrates on gastrointestinal tumors, detailing methods for targeting macrophages to enhance tumor radiotherapy and immunotherapy sensitivity. We specifically delve into monocytes and tumor-associated macrophages' various functions, establishing an immunosuppressive microenvironment, promoting tumorigenic inflammation, and fostering neovascularization and stromal remodeling. Additionally, we examine combination therapeutic strategies.
    Keywords:  Drug resistance; Gastrointestinal Tumors; Immunotherapy; Macrophage; Myeloid Cell
    DOI:  https://doi.org/10.1016/j.critrevonc.2024.104362
  14. Immunol Cell Biol. 2024 Apr 17.
      Resident macrophages of various mammalian organs are characterized by several distinctive features in their gene expression profile and phenotype, including involvement in the regulation of organ functions, as well as reduced sensitivity to proinflammatory activation factors. The reasons for the formation of such a specific phenotype remain the subject of intensive research. Some papers emphasize the role of the origin of organ macrophages. Other studies indicate that monocytes that develop in the red bone marrow are also able to form resident macrophages with a phenotype characteristic of a particular organ, but this requires appropriate microenvironmental conditions. In this article, we studied the possibility of differentiation of monocyte-derived macrophages into cells with a Kupffer-like phenotype under the influence of the main stromal components of Kupffer cells macrophage niche: Ito cells, liver sinusoid endotheliocytes and hepatocyte growth factor (HGF). It was found that Kupffer cells are characterized by several features, including increased expression of transcription factors Spic and Id3, as well as MUP family genes, Clusterin and Ngp genes. In addition, Kupffer cells were characterized by a higher proliferative activity. The expression of marker genes of Kupffer cells (i.e. Id3, Spic, Marco and Timd4) increased in monocyte-derived macrophages during coculture with Ito cells, liver sinusoid endothelial cells, macrophage colony-stimulating factor and HGF cells only by 3 days. However, the expression level of these genes was always higher in Kupffer cells. In addition, a complete coincidence of the expressed gene profile in monocyte-derived macrophages and Kupffer cells did not occur even after 3 days of culturing.
    Keywords:  Ito cells; Kupffer cells; liver sinusoid endotheliocytes; macrophages; monocytes
    DOI:  https://doi.org/10.1111/imcb.12746
  15. Comput Struct Biotechnol J. 2024 Dec;23 1534-1546
      Glioblastoma (GBM) is one of the most malignant tumors of the central nervous system. The pattern of immune checkpoint expression in GBM remains largely unknown. We performed snRNA-Seq and spatial transcriptomic (ST) analyses on untreated GBM samples. 8 major cell types were found in both tumor and adjacent normal tissues, with variations in infiltration grade. Neoplastic cells_6 was identified in malignant cells with high expression of invasion and proliferator-related genes, and analyzed its interactions with microglia, MDM cells and T cells. Significant alterations in ligand-receptor interactions were observed, particularly between Neoplastic cells_6 and microglia, and found prominent expression of VISTA/VSIG3, suggesting a potential mechanism for evading immune system attacks. High expression of TIM-3, VISTA, PSGL-1 and VSIG-3 with similar expression patterns in GBM, may have potential as therapeutic targets. The prognostic value of VISTA expression was cross-validated in 180 glioma patients, and it was observed that patients with high VISTA expression had a poorer prognosis. In addition, multimodal cross analysis integrated SnRNA-seq and ST, revealing complex intracellular communication and mapping the GBM tumor microenvironment. This study reveals novel molecular characteristics of GBM, co-expression of immune checkpoints, and potential therapeutic targets, contributing to improving the understanding and treatment of GBM.
    Keywords:  Cell-cell communication; Glioblastoma; Immune checkpoints; Single-nucleus RNA sequencing; Spatial transcriptomics
    DOI:  https://doi.org/10.1016/j.csbj.2024.04.014
  16. Sci Rep. 2024 04 17. 14(1): 8911
      Lymphatic invasion (LI) is extremely aggressive and induces worse prognosis among patients with colorectal cancer (CRC). Thus, it is critical to characterize the cellular and molecular mechanisms underlying LI in order to establish novel and efficacious therapeutic targets that enhance the prognosis of CRC patients. RNA-seq data, clinical and survival information of colon adenocarcinoma (COAD) patients were obtained from the TCGA database. In addition, three scRNA-seq datasets of CRC patients were acquired from the GEO database. Data analyses were conducted with the R packages. We assessed the tumor microenvironment (TME) differences between LI+ and LI- based scRNA-seq data, LI+ cells exhibited augmented abundance of immunosuppression and invasive subset. Marked extracellular matrix network activation was also observed in LI+ cells within SPP1+ macrophages. We revealed that an immunosuppressive and pro-angiogenic TME strongly enhanced LI, as was evidenced by the CD4+ Tregs, CD8+ GZMK+, SPP1+ macrophages, e-myCAFs, and w-myCAFs subcluster infiltrations. Furthermore, we identified potential LI targets that influenced tumor development, metastasis, and immunotherapeutic response. Finally, a novel LIRS model was established based on the expression of 14 LI-related signatures, and in the two testing cohorts, LIRS was also proved to have accurate prognostic predictive ability. In this report, we provided a valuable resource and extensive insights into the LI of CRC. Our conclusions can potentially benefit the establishment of highly efficacious therapeutic targets as well as diagnostic biomarkers that improve patient outcomes.
    DOI:  https://doi.org/10.1038/s41598-024-59656-6
  17. Cell Death Dis. 2024 Apr 17. 15(4): 273
      Poor survival and lack of treatment response in glioblastoma (GBM) is attributed to the persistence of glioma stem cells (GSCs). To identify novel therapeutic approaches, we performed CRISPR/Cas9 knockout screens and discovered TGFβ activated kinase (TAK1) as a selective survival factor in a significant fraction of GSCs. Loss of TAK1 kinase activity results in RIPK1-dependent apoptosis via Caspase-8/FADD complex activation, dependent on autocrine TNFα ligand production and constitutive TNFR signaling. We identify a transcriptional signature associated with immune activation and the mesenchymal GBM subtype to be a characteristic of cancer cells sensitive to TAK1 perturbation and employ this signature to accurately predict sensitivity to the TAK1 kinase inhibitor HS-276. In addition, exposure to pro-inflammatory cytokines IFNγ and TNFα can sensitize resistant GSCs to TAK1 inhibition. Our findings reveal dependency on TAK1 kinase activity as a novel vulnerability in immune-activated cancers, including mesenchymal GBMs that can be exploited therapeutically.
    DOI:  https://doi.org/10.1038/s41419-024-06654-1
  18. Drug Resist Updat. 2024 Apr 16. pii: S1368-7646(24)00043-8. [Epub ahead of print]74 101085
      Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase (PARP) inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase acknowledged for its regulatory roles in immune cell function, cell adhesion, and vascular development. This study presents evidence indicating that Syk expression in high-grade serous ovarian cancer and triple-negative breast cancers promotes DNA double-strand break resection, homologous recombination (HR), and subsequent therapeutic resistance. Our investigations reveal that Syk is activated by ATM following DNA damage and is recruited to DNA double-strand breaks by NBS1. Once localized to the break site, Syk phosphorylates CtIP, a pivotal mediator of resection and HR, at Thr-847 to promote repair activity, particularly in Syk-expressing cancer cells. Inhibition of Syk or its genetic deletion impedes CtIP Thr-847 phosphorylation and overcomes the resistant phenotype. Collectively, our findings suggest a model wherein Syk fosters therapeutic resistance by promoting DNA resection and HR through a hitherto uncharacterized ATM-Syk-CtIP pathway. Moreover, Syk emerges as a promising tumor-specific target to sensitize Syk-expressing tumors to PARP inhibitors, radiation and other DNA-targeted therapies.
    Keywords:  Cancer resistance; CtIP; DNA targeted therapy; Homologous recombination; Syk
    DOI:  https://doi.org/10.1016/j.drup.2024.101085
  19. Front Immunol. 2024 ;15 1232070
      Chronic liver diseases, such as non-alcoholic steatohepatitis (NASH)-induced cirrhosis, are characterized by an increasing accumulation of stressed, damaged, or dying hepatocytes. Hepatocyte damage triggers the activation of resident immune cells, such as Kupffer cells (KC), as well as the recruitment of immune cells from the circulation toward areas of inflammation. After infiltration, monocytes differentiate into monocyte-derived macrophages (MoMF) which are functionally distinct from resident KC. We herein aim to compare the in vitro signatures of polarized macrophages and activated hepatic stellate cells (HSC) with ex vivo-derived disease signatures from human NASH. Furthermore, to shed more light on HSC activation and liver fibrosis progression, we investigate the effects of the secretome from primary human monocytes, macrophages, and NK cells on HSC activation. Interleukin (IL)-4 and IL-13 treatment induced transforming growth factor beta 1 (TGF-β1) secretion by macrophages. However, the supernatant transfer did not induce HSC activation. Interestingly, PMA-activated macrophages showed strong induction of the fibrosis response genes COL10A1 and CTGF, while the supernatant of IL-4/IL-13-treated monocytes induced the upregulation of COL3A1 in HSC. The supernatant of PMA-activated NK cells had the strongest effect on COL10A1 induction in HSC, while IL-15-stimulated NK cells reduced the expression of COL1A1 and CTGF. These data indicate that other factors, aside from the well-known cytokines and chemokines, might potentially be stronger contributors to the activation of HSCs and induction of a fibrotic response, indicating a more diverse and complex role of monocytes, macrophages, and NK cells in liver fibrosis progression.
    Keywords:  NASH - non-alcoholic steatohepatitis; NK cells; inflammation; liver fibrosis; monocyte-derived macrophage (MDM)
    DOI:  https://doi.org/10.3389/fimmu.2024.1232070
  20. Oncol Res Treat. 2024 Apr 18.
       BACKGROUND: The cancers of the digestive tract, including colorectal cancer (CRC), gastric cancer (GC) and Esophageal cancer (ESCA), are part of the most common cancers as well as one of the most important leading causes of cancer death worldwide.
    SUMMARY: Despite the emergence of immune checkpoint inhibitors (e.g., anti-CTLA-4 and anti-PD-1/PD-L1) in the past decade, offering renewed optimism in cancer treatment, only a fraction of patients derive benefit from these therapies. This limited efficacy may stem from tumor heterogeneity and the impact of metabolic reprogramming on both tumor cells and immune cells within the tumor microenvironment (TME). The metabolic reprogramming of glucose, lipids, amino acids, and other nutrients represents a pivotal hallmark of cancer, serving to generate energy, reducing-equivalent and biological macromolecule, thereby fostering tumor proliferation and invasion. Significantly, the metabolic reprogramming of tumor cells can orchestrate changes within the TME, rendering patients unresponsive to immunotherapy.
    KEY MESSAGES: In this review, we predominantly encapsulate recent strides on metabolic reprogramming among digestive tract cancer, especially CRC, in the TME with a focus on how these alterations influence antitumor immunity. Additionally, we deliberate on potential strategies to address these abnormities in metabolic pathways and the viability of combined therapy within the realm of anticancer immunotherapy.
    DOI:  https://doi.org/10.1159/000538659
  21. J Neurosci Methods. 2024 Apr 14. pii: S0165-0270(24)00082-7. [Epub ahead of print]406 110137
       BACKGROUND: The neuronal and gliaI populations within the brain are tightly interwoven, making isolation and study of large populations of a single cell type from brain tissue a major technical challenge. Concurrently, cell-type specific extracellular vesicles (EVs) hold enormous diagnostic and therapeutic potential in neurodegenerative disorders including Alzheimer's disease (AD).
    NEW METHOD: Postmortem AD cortical samples were thawed and gently dissociated. Following filtration, myelin and red blood cell removal, cell pellets were immunolabeled with fluorescent antibodies and analyzed by flow cytometry. The cell pellet supernatant was applied to a triple sucrose cushion for brain EV isolation.
    RESULTS: Neuronal, astrocyte and microglial cell populations were identified. Cell integrity was demonstrated using calcein AM, which is retained by cells with esterase activity and an intact membrane. For some experiments cell pellets were fixed, permeabilized, and immunolabeled for cell-specific markers. Characterization of brain small EV fractions showed the expected size, depletion of EV negative markers, and enrichment in positive and cell-type specific markers.
    COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: We optimized and integrated established protocols, aiming to maximize information obtained from each human autopsy brain sample. The uniqueness of our method lies in its capability to isolate cells and EVs from a single cryopreserved brain sample. Our results not only demonstrate the feasibility of isolating specific brain cell subpopulations for RNA-seq but also validate these subpopulations at the protein level. The accelerated study of EVs from human samples is crucial for a better understanding of their contribution to neuron/glial crosstalk and disease progression.
    Keywords:  Astrocytes; Dissociation; Exosomes; Extracellular vesicles; Flow cytometry; Microglia; Neurons; Oligodendrocytes
    DOI:  https://doi.org/10.1016/j.jneumeth.2024.110137
  22. Onco Targets Ther. 2024 ;17 313-325
      Tumor microenvironment (TME) is a complex and integrated system containing a variety of tumor-infiltrating immune cells and stromal cells. They are closely connected with cancer cells and influence the development and progression of cancer. Traditional Chinese medicine (TCM) is an important complementary therapy for cancer treatment in China. It mainly eliminates cancer cells by regulating TME. The aim of this review is to systematically summarize the crosstalk between tumor cells and TME, and to summarize the research progress of TCM in regulating TME. The review is of great significance in revealing the therapeutic mechanism of action of TCM, and provides an opportunity for the combined application of TCM and immunotherapy in cancer treatment.
    Keywords:  anti-tumor effects; cancer; traditional Chinese medicine; tumor microenvironment
    DOI:  https://doi.org/10.2147/OTT.S444214
  23. Front Immunol. 2024 ;15 1378190
      Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at advanced stages and associated with early distant metastasis and poor survival. Besides clinical factors, the tumor microenvironment (TME) emerged as a crucial determinant of patient survival and therapy response in many tumors, including PDAC. Thus, the presence of tumor-infiltrating lymphocytes and the formation of tertiary lymphoid structures (TLS) is associated with longer survival in PDAC. Although neoadjuvant therapy (NeoTx) has improved the management of locally advanced tumors, detailed insight into its effect on various TME components is limited. While a remodeling towards a proinflammatory state was reported for PDAC-infiltrating T cells, the effect of NeoTx on B cell subsets, including plasma cells, and TLS formation is widely unclear. We thus investigated the frequency, composition, and spatial distribution of PDAC-infiltrating B cells in primary resected (PR) versus neoadjuvant-treated patients using a novel multiplex immunohistochemistry panel. The NeoTx group displayed significantly lower frequencies of pan B cells, GC B cells, plasmablasts, and plasma cells, accompanied by a reduced abundance of TLS. This finding was supported by bulk RNA-sequencing analysis of an independent fresh frozen tissue cohort, which revealed that major B cell pathways were downregulated in the NeoTx group. We further observed that plasma cells frequently formed aggregates that localized close to TLS and that TLS+ patients displayed significantly higher plasma cell frequencies compared to TLS- patients in the PR group. Additionally, high densities of CD20+ intratumoral B cells were significantly associated with longer overall survival in the PR group. While CD20+ B cells held no prognostic value for NeoTx patients, an increased frequency of proliferating CD20+Ki67+ B cells emerged as an independent prognostic factor for longer survival in the NeoTx group. These results indicate that NeoTx differentially affects PDAC-infiltrating immune cells and may have detrimental effects on the existing B cell landscape and the formation of TLS. Gaining further insight into the underlying molecular mechanisms is crucial to overcome the intrinsic immunotherapy resistance of PDAC and develop novel strategies to improve the long-term outcome of PDAC patients.
    Keywords:  B cells; neoadjuvant chemotherapy; pancreatic ductal adenocarcinoma; plasma cells; tertiary lymphoid structures; tumor immune contexture
    DOI:  https://doi.org/10.3389/fimmu.2024.1378190
  24. Int J Biol Sci. 2024 ;20(6): 2151-2167
      Immunotherapy plays a key role in cancer treatment, however, responses are limited to a small number of patients. The biological basis for the success of immunotherapy is the complex interaction between tumor cells and tumor immune microenvironment (TIME). Historically, research on tumor immune constitution was limited to the analysis of one or two markers, more novel technologies are needed to interpret the complex interactions between tumor cells and TIME. In recent years, major advances have already been made in depicting TIME at a considerably elevated degree of throughput, dimensionality and resolution, allowing dozens of markers to be labeled simultaneously, and analyzing the heterogeneity of tumour-immune infiltrates in detail at the single cell level, depicting the spatial landscape of the entire microenvironment, as well as applying artificial intelligence (AI) to interpret a large amount of complex data from TIME. In this review, we summarized emerging technologies that have made contributions to the field of TIME, and provided prospects for future research.
    Keywords:  Artificial intelligence; Cytometry-based techniques; Multiplexing imaging techniques; RNA sequencing; Tumor immune microenvironment
    DOI:  https://doi.org/10.7150/ijbs.92525
  25. Biochim Biophys Acta Gene Regul Mech. 2024 Apr 16. pii: S1874-9399(24)00024-5. [Epub ahead of print] 195028
      Immunotherapy is a promising and long-lasting tumor treatment method, but it is challenged by the complex metabolism of tumors. To optimize immunotherapy, it is essential to further investigate the key proteins that regulate tumor metabolism and immune response. STAT3 plays a crucial role in regulating tumor dynamic metabolism and affecting immune cell function by responding to various cytokines and growth factors, which can be used as a potential target for immunotherapy. This review focuses on the crosstalk between STAT3 and tumor metabolism (including glucose, lipid, and amino acid metabolism) and its impact on the differentiation and function of immune cells such as T cells, tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), and reveals potential treatment strategies.
    Keywords:  Immune cell; Immunotherapy; Metabolism; STAT3; Tumor
    DOI:  https://doi.org/10.1016/j.bbagrm.2024.195028
  26. Cancer Biol Ther. 2024 Dec 31. 25(1): 2342599
      The introduction of novel immunotherapies has significantly transformed the treatment landscape of genitourinary (GU) cancers, even becoming the standard of care in some settings. One such type of immunotherapy, immune checkpoint inhibitors (ICIs) like nivolumab, ipilimumab, pembrolizumab, and atezolizumab play a pivotal role by disturbing signaling pathways that limit the immune system's ability to fight tumor cells. Despite the profound impact of these treatments, not all tumors are responsive. Recent research efforts have been focused on understanding how cancer cells manage to evade the immune response and identifying the possible mechanisms behind resistance to immunotherapy. In response, ICIs are being combined with other treatments to reduce resistance and attack cancer cells through multiple cellular pathways. Additionally, novel, targeted strategies are currently being investigated to develop innovative methods of overcoming resistance and treatment failure. This article presents a comprehensive overview of the mechanisms of immunotherapy resistance in GU cancers as currently described in the literature. It explores studies that have identified genetic markers, cytokines, and proteins that may predict resistance or response to immunotherapy. Additionally, we review current efforts to overcome this resistance, which include combination ICIs and sequential therapies, novel insights into the host immune profile, and new targeted therapies. Various approaches that combine immunotherapy with chemotherapy, targeted therapy, vaccines, and radiation have been studied in an effort to more effectively overcome resistance to immunotherapy. While each of these combination therapies has shown some efficacy in clinical trials, a deeper understanding of the immune system's role underscores the potential of novel targeted therapies as a particularly promising area of current research. Currently, several targeted agents are in development, along with the identification of key immune mediators involved in immunotherapy resistance. Further research is necessary to identify predictors of response.
    Keywords:  Nivolumab; immune checkpoint inhibitors; immunotherapy; immunotherapy resistance; ipilimumab; programmed cell death protein-1 (PD-1); programmed death ligand-1 (PD-L1); prostate cancer; renal cell carcinoma; urothelial cell carcinoma
    DOI:  https://doi.org/10.1080/15384047.2024.2342599
  27. bioRxiv. 2024 Apr 04. pii: 2024.04.04.588047. [Epub ahead of print]
      Human Immunodeficiency Virus (HIV) is widely acknowledged for its profound impact on the immune system. Although HIV primarily affects peripheral CD4 T cells, its influence on the central nervous system (CNS) cannot be overlooked. Within the brain, microglia and CNS-associated macrophages (CAMs) serve as the primary targets for HIV, as well as for the simian immunodeficiency virus (SIV) in nonhuman primates. This infection can lead to neurological effects and the establishment of a viral reservoir. Given the gaps in our understanding of how these cells respond in vivo to acute CNS infection, we conducted single-cell RNA sequencing (scRNA-seq) on myeloid cells from the brains of three rhesus macaques 12-days after SIV infection, along with three uninfected controls. Our analysis revealed six distinct microglial clusters including homeostatic microglia, preactivated microglia, and activated microglia expressing high levels of inflammatory and disease-related molecules. In response to acute SIV infection, the population of homeostatic and preactivated microglia decreased, while the activated and disease-related microglia increased. All microglial clusters exhibited upregulation of MHC class I molecules and interferon-related genes, indicating their crucial roles in defending against SIV during the acute phase. All microglia clusters also upregulated genes linked to cellular senescence. Additionally, we identified two distinct CAM populations: CD14 low CD16 hi and CD14 hi CD16 low CAMs. Interestingly, during acute SIV infection, the dominant CAM population changed to one with an inflammatory phenotype. Notably, specific upregulated genes within one microglia and one macrophage cluster were associated with neurodegenerative pathways, suggesting potential links to neurocognitive disorders. This research sheds light on the intricate interactions between viral infection, innate immune responses, and the CNS, providing valuable insights for future investigations.
    AUTHOR SUMMARY: HIV's entry into the central nervous system (CNS) can lead to neurological dysfunction, including HIV-associated neurocognitive disorders (HAND), and the establishment of a viral reservoir. While microglia and CNS-associated macrophages (CAMs) are the primary targets of HIV in the CNS, their responses during acute HIV infection remain poorly defined. To address this, we employed the scRNA-seq technique to study microglial and CAM populations in rhesus macaques during acute SIV infection. By identifying signature genes associated with different phenotypes and mapping them to various biological and pathological pathways, we discovered two myeloid cell clusters strongly linked to neurodegenerative disorders. Additionally, other clusters were associated with inflammatory pathways, suggesting varying degrees of activation among different myeloid cell populations in the brain, possibly mediated by distinct signaling pathways. All microglia clusters developed signs of the cellular senescence pathway. These findings shed light on the immunological and pathological effects of different myeloid phenotypes in the brain during acute SIV infection, providing valuable insights for future therapeutic strategies targeting this critical stage and aiming to eliminate the viral reservoir.
    DOI:  https://doi.org/10.1101/2024.04.04.588047
  28. J Immunother Cancer. 2024 Apr 17. pii: e008606. [Epub ahead of print]12(4):
       BACKGROUND: Tumor-targeted therapy causes impressive tumor regression, but the emergence of resistance limits long-term survival benefits in patients. Little information is available on the role of the myeloid cell network, especially dendritic cells (DC) during tumor-targeted therapy.
    METHODS: Here, we investigated therapy-mediated immunological alterations in the tumor microenvironment (TME) and tumor-draining lymph nodes (LN) in the D4M.3A preclinical melanoma mouse model (harboring the V-Raf murine sarcoma viral oncogene homolog B (BRAF)V600E mutation) by using high-dimensional multicolor flow cytometry in combination with multiplex immunohistochemistry. This was complemented with RNA sequencing and cytokine quantification to characterize the immune status of the tumors. The importance of T cells during tumor-targeted therapy was investigated by depleting CD4+ or CD8+ T cells in tumor-bearing mice. Tumor antigen-specific T-cell responses were characterized by performing in vivo T-cell proliferation assays and the contribution of conventional type 1 DC (cDC1) to T-cell immunity during tumor-targeted therapy was assessed using Batf3-/- mice lacking cDC1.
    RESULTS: Our findings reveal that BRAF-inhibitor therapy increased tumor immunogenicity, reflected by an upregulation of genes associated with immune activation. The T cell-inflamed TME contained higher numbers of activated cDC1 and cDC2 but also inflammatory CCR2-expressing monocytes. At the same time, tumor-targeted therapy enhanced the frequency of migratory, activated DC subsets in tumor-draining LN. Even more, we identified a cDC2 population expressing the Fc gamma receptor I (FcγRI)/CD64 in tumors and LN that displayed high levels of CD40 and CCR7 indicating involvement in T cell-mediated tumor immunity. The importance of cDC2 is underlined by just a partial loss of therapy response in a cDC1-deficient mouse model. Both CD4+ and CD8+ T cells were essential for therapy response as their respective depletion impaired therapy success. On resistance development, the tumors reverted to an immunologically inert state with a loss of DC and inflammatory monocytes together with the accumulation of regulatory T cells. Moreover, tumor antigen-specific CD8+ T cells were compromised in proliferation and interferon-γ-production.
    CONCLUSION: Our results give novel insights into the remodeling of the myeloid landscape by tumor-targeted therapy. We demonstrate that the transient immunogenic tumor milieu contains more activated DC. This knowledge has important implications for the development of future combinatorial therapies.
    Keywords:  Dendritic cells; Immune modulatory; Myeloid cells; Skin Cancer; Tumor immunity; Tumor-targeted therapy
    DOI:  https://doi.org/10.1136/jitc-2023-008606
  29. bioRxiv. 2024 Apr 03. pii: 2024.04.02.587608. [Epub ahead of print]
       Background: Glioblastoma (GBM) has a highly immunosuppressive tumor immune microenvironment (TIME), largely mediated by myeloid-derived suppressor cells (MDSCs). Here, we utilized a retroviral replicating vector (RRV) to deliver Interferon Regulatory Factor 8 (IRF8), a master regulator of type 1 conventional dendritic cell (cDC1) development, in a syngeneic murine GBM model. We hypothesized that RRV-mediated delivery of IRF8 could "reprogram" intratumoral MDSCs into antigen-presenting cells (APCs) and thereby restore T-cell responses.
    Methods: Effects of RRV-IRF8 on survival and tumor growth kinetics were examined in the SB28 murine GBM model. Immunophenotype was analyzed by flow cytometry and gene expression assays. We assayed functional immunosuppression and antigen presentation by ex vivo T-cell-myeloid co-culture.
    Results: Mice with RRV-IRF8 pre-transduced intracerebral tumors had significantly longer survival and slower tumor growth compared to controls. RRV-IRF8 treated tumors exhibited significant enrichment of cDC1s and CD8+ T-cells. Additionally, myeloid cells derived from RRV-IRF8 tumors showed decreased expression of the immunosuppressive markers Arg1 and IDO1 and demonstrated reduced suppression of naïve T-cell proliferation in e x vivo co-culture, compared to controls. Furthermore, DCs from RRV-IRF8 tumors showed increased antigen presentation compared to those from control tumors. In vivo treatment with azidothymidine (AZT), a viral replication inhibitor, showed that IRF8 transduction in both tumor and non-tumor cells is necessary for survival benefit, associated with a reprogrammed, cDC1- and CD8 T-cell-enriched TIME.
    Conclusions: Our results indicate that reprogramming of glioma-infiltrating myeloid cells by in vivo expression of IRF8 may reduce immunosuppression and enhance antigen presentation, achieving improved tumor control.
    Key points: GBM intra-tumoral myeloid cells are proliferative and targets for RRV therapy.Expression of IRF8 significantly improves survival and slows tumor growth in murine GBM. IRF8 expression in MDSCs reduces immunosuppression and enriches cDC1s in vivo .
    Importance of the study: Recent publications have presented conflicting studies regarding the role of IRF8 in GBM. While some studies showed IRF8 as a negative prognostic factor, others demonstrated the conversion of tumor cells into DCs using IRF8. Here, we show that RRV-mediated delivery of IRF8, a clinically relevant modality, allows for transduction of both tumor and immune cells in vivo . We show that a significant survival effect relies heavily on the infection and modulation of both populations, and that even a modest number of reprogrammed intra-tumoral MDSCs can have a substantial impact on the immunological milieu, significantly enriching and activating cytotoxic T-cells. Further, this work reveals intra-tumoral myeloid cells as a target for other RRV-based gene therapies.
    DOI:  https://doi.org/10.1101/2024.04.02.587608
  30. Cancer Rep (Hoboken). 2024 Apr;7(4): e2073
       BACKGROUND: Immunogenic cell death (ICD) is a type of regulated cell death that is capable of initiating an adaptive immune response. Induction of ICD may be a potential treatment strategy, as it has been demonstrated to activate the tumor-specific immune response.
    AIMS: The biomarkers of ICD and their relationships with the tumor microenvironment, clinical features, and immunotherapy response are not fully understood in a clinical context. Therefore, we conducted pan-cancer analyses of ICD gene signatures across 33 cancer types from The Cancer Genome Atlas database.
    METHODS AND RESULTS: We identified key genes that had strong relationships with survival and the tumor microenvironment, contributing to a better understanding of the role of ICD genes in cancer therapy. In addition, we predicted therapeutic agents that target ICD genes and explored the potential mechanisms by which gemcitabine induce ICD. Moreover, we developed an ICD score based on the ICD genes and found it to be associated with patient prognosis, clinical features, tumor microenvironment, radiotherapy access, and immunotherapy response. A high ICD score was linked to the immune-hot phenotype, while a low ICD score was linked to the immune-cold phenotype.
    CONCLUSION: We uncovered the potential of ICD gene signatures as comprehensive biomarkers for ICD in pan-cancer. Our research provides novel insights into immuno-phenotypic assessment and cancer therapeutic strategies, which could help to broaden the application of immunotherapy to benefit more patients.
    Keywords:  immunogenic cell death; immunotherapy; pan‐cancer; prognosis; tumor microenvironment
    DOI:  https://doi.org/10.1002/cnr2.2073
  31. World J Gastroenterol. 2024 Mar 21. 30(11): 1609-1620
       BACKGROUND: Liver cancer is one of the deadliest malignant tumors worldwide. Immunotherapy has provided hope to patients with advanced liver cancer, but only a small fraction of patients benefit from this treatment due to individual differences. Identifying immune-related gene signatures in liver cancer patients not only aids physicians in cancer diagnosis but also offers personalized treatment strategies, thereby improving patient survival rates. Although several methods have been developed to predict the prognosis and immunotherapeutic efficacy in patients with liver cancer, the impact of cell-cell interactions in the tumor microenvironment has not been adequately considered.
    AIM: To identify immune-related gene signals for predicting liver cancer prognosis and immunotherapy efficacy.
    METHODS: Cell grouping and cell-cell communication analysis were performed on single-cell RNA-sequencing data to identify highly active cell groups in immune-related pathways. Highly active immune cells were identified by intersecting the highly active cell groups with B cells and T cells. The significantly differentially expressed genes between highly active immune cells and other cells were subsequently selected as features, and a least absolute shrinkage and selection operator (LASSO) regression model was constructed to screen for diagnostic-related features. Fourteen genes that were selected more than 5 times in 10 LASSO regression experiments were included in a multivariable Cox regression model. Finally, 3 genes (stathmin 1, cofilin 1, and C-C chemokine ligand 5) significantly associated with survival were identified and used to construct an immune-related gene signature.
    RESULTS: The immune-related gene signature composed of stathmin 1, cofilin 1, and C-C chemokine ligand 5 was identified through cell-cell communication. The effectiveness of the identified gene signature was validated based on experimental results of predictive immunotherapy response, tumor mutation burden analysis, immune cell infiltration analysis, survival analysis, and expression analysis.
    CONCLUSION: The findings suggest that the identified gene signature may contribute to a deeper understanding of the activity patterns of immune cells in the liver tumor microenvironment, providing insights for personalized treatment strategies.
    Keywords:  Cell-cell communication; Gene signature; Immunotherapy; Liver cancer; Prognosis; Single-cell RNA sequencing
    DOI:  https://doi.org/10.3748/wjg.v30.i11.1609
  32. PLoS One. 2024 ;19(4): e0299949
       BACKGROUND: Although there is evidence that ribonucleotide reductase subunit M2 (RRM2) is associated with numerous cancers, pan-cancer analysis has seldom been conducted. This study aimed to explore the potential carcinogenesis of RRM2 in pan-cancer using datasets from The Cancer Genome Atlas (TCGA).
    METHODS: Data from the UCSC Xena database were analyzed to investigate the differential expression of RRM2 across multiple cancer types. Clinical data such as age, race, sex, tumor stage, and status were acquired to analyze the influence of RRM2 on the clinical characteristics of the patients. The role of RRM2 in the onset and progression of multiple cancers has been examined in terms of genetic changes at the molecular level, including tumor mutational burden (TMB), microsatellite instability (MSI), biological pathway changes, and the immune microenvironment.
    RESULTS: RRM2 was highly expressed in most cancers, and there was an obvious correlation between RRM2 expression and patient prognosis. RRM2 expression is associated with the infiltration of diverse immune and endothelial cells, immune checkpoints, tumor mutational burden (TMB), and microsatellite instability (MSI). Moreover, the cell cycle is involved in the functional mechanisms of RRM2.
    CONCLUSIONS: Our pan-cancer study provides a comprehensive understanding of the carcinogenesis of RRM2 in various tumors.
    DOI:  https://doi.org/10.1371/journal.pone.0299949
  33. Front Immunol. 2024 ;15 1372272
       Background: Tumors in the distal esophagus (EAC), gastro-esophageal junction including cardia (GEJAC), and stomach (GAC) develop in close proximity and show strong similarities on a molecular and cellular level. However, recent clinical data showed that the effectiveness of chemo-immunotherapy is limited to a subset of GEAC patients and that EACs and GEJACs generally benefit less from checkpoint inhibition compared to GACs. As the composition of the tumor immune microenvironment drives response to (immuno)therapy we here performed a detailed immune analysis of a large series of GEACs to facilitate the development of a more individualized immunomodulatory strategy.
    Methods: Extensive immunophenotyping was performed by 14-color flow cytometry in a prospective study to detail the immune composition of untreated gastro-esophageal cancers (n=104) using fresh tumor biopsies of 35 EACs, 38 GEJACs and 31 GACs. The immune cell composition of GEACs was characterized and correlated with clinicopathologic features such as tumor location, MSI and HER2 status. The spatial immune architecture of a subset of tumors (n=30) was evaluated using multiplex immunohistochemistry (mIHC) which allowed us to determine the tumor infiltration status of CD3+, CD8+, FoxP3+, CD163+ and Ki67+ cells.
    Results: Immunophenotyping revealed that the tumor immune microenvironment of GEACs is heterogeneous and that immune suppressive cell populations such as monocytic myeloid-derived suppressor cells (mMDSC) are more abundant in EACs compared to GACs (p<0.001). In contrast, GACs indicated a proinflammatory microenvironment with elevated frequencies of proliferating (Ki67+) CD4 Th cells (p<0.001), Ki67+ CD8 T cells (p=0.002), and CD8 effector memory-T cells (p=0.024). Differences between EACs and GACs were confirmed by mIHC analyses showing lower densities of tumor- and stroma-infiltrating Ki67+ CD8 T cells in EAC compared to GAC (both p=0.021).
    Discussions: This comprehensive immune phenotype study of a large series of untreated GEACs, identified that tumors with an esophageal tumor location have more immune suppressive features compared to tumors in the gastro-esophageal junction or stomach which might explain the location-specific responses to checkpoint inhibitors in this disease. These findings provide an important rationale for stratification according to tumor location in clinical studies and the development of location-dependent immunomodulatory treatment approaches.
    Keywords:  HER2; MSI; biomarkers; single cell flow cytometry; tumor microenvironment
    DOI:  https://doi.org/10.3389/fimmu.2024.1372272
  34. Cancer Lett. 2024 Apr 14. pii: S0304-3835(24)00287-8. [Epub ahead of print] 216894
      This comprehensive review delves into the pivotal role of the tumor microenvironment (TME) in cancer metastasis and therapeutic response, offering fresh insights into the intricate interplay between cancer cells and their surrounding milieu. The TME, a dynamic ecosystem comprising diverse cellular and acellular elements, not only fosters tumor progression but also profoundly affects the efficacy of conventional and emerging cancer therapies. Through nuanced exploration, this review illuminates the multifaceted nature of the TME, elucidating its capacity to engender drug resistance via mechanisms such as hypoxia, immune evasion, and the establishment of physical barriers to drug delivery. Moreover, it investigates innovative therapeutic approaches aimed at targeting the TME, including stromal reprogramming, immune microenvironment modulation, extracellular matrix (ECM)-targeting agents, and personalized medicine strategies, highlighting their potential to augment treatment outcomes. Furthermore, this review critically evaluates the challenges posed by the complexity and heterogeneity of the TME, which contribute to variable therapeutic responses and potentially unintended consequences. This underscores the need to identify robust biomarkers and advance predictive models to anticipate treatment outcomes, as well as advocate for combination therapies that address multiple facets of the TME. Finally, the review emphasizes the necessity of an interdisciplinary approach and the integration of cutting-edge technologies to unravel the intricacies of the TME, thereby facilitating the development of more effective, adaptable, and personalized cancer treatments. By providing critical insights into the current state of TME research and its implications for the future of oncology, this review highlights the dynamic and evolving landscape of this field.
    DOI:  https://doi.org/10.1016/j.canlet.2024.216894
  35. Cell Rep. 2024 Apr 15. pii: S2211-1247(24)00448-0. [Epub ahead of print]43(4): 114120
      Border-associated macrophages (BAMs) are tissue-resident macrophages that reside at the border of the central nervous system (CNS). Since BAMs originate from yolk sac progenitors that do not persist after birth, the means by which this population of cells is maintained is not well understood. Using two-photon microscopy and multiple lineage-tracing strategies, we determine that CCR2+ monocytes are significant contributors to BAM populations following disruptions of CNS homeostasis in adult mice. After BAM depletion, while the residual BAMs possess partial self-repopulation capability, the CCR2+ monocytes are a critical source of the repopulated BAMs. In addition, we demonstrate the existence of CCR2+ monocyte-derived long-lived BAMs in a brain compression model and in a sepsis model after the initial disruption of homeostasis. Our study reveals that the short-lived CCR2+ monocytes transform into long-lived BAM-like cells at the CNS border and subsequently contribute to BAM populations.
    Keywords:  BAM; CCR2; CP: Immunology; CP: Neuroscience; LPS; border-associated macrophages; brain compression; csf1; meningitis; microglia; monocyte; repopulation
    DOI:  https://doi.org/10.1016/j.celrep.2024.114120
  36. Front Oncol. 2024 ;14 1346793
       Introduction: In the era of personalized medicine and treatment optimization, use of immune biomarkers holds promise for estimating the prognosis of patients with head and neck squamous cell carcinoma (HNSCC) undergoing definitive treatment.
    Methods: To evaluate the prognostic potential of immune biomarkers, we conducted a prospective monocentric cohort study with loco-regionally advanced HNSCC patients indicated for definitive radiotherapy/radiochemotherapy at the Department of Oncology, Ostrava University Hospital, Czech Republic, between June 2020 and August 2023. We focused on the expression of programmed death ligand 1 (PD-L1) and tumor-infiltrating lymphocytes (TILs) relative to overall survival (OS) and specific survival rates. Associations between biomarkers and survival rates were assessed by crude and adjusted hazard ratios (cHR, aHR, respectively) obtained from Cox proportional hazards regression.
    Results: Among a total of 55 patients within a median follow-up of 19.7 months, there were 21 (38.2%) all-cause deaths and 15 (27.3%) cancer-related deaths. An overall survival (OS) rate of 61.8% and a disease-specific survival (DSS) rate of 72.7% were recorded. A significant association between survival rates and a ≥10% difference in PD-L1 expression on immune versus tumor cells (high PD-L1IC expression) was documented regardless of the type of analysis (univariate or multivariate). In addition, a stronger association was confirmed for OS and the composite biomarker high PD-L1IC expression along with either median-higher CD8+ TIL count or increased TIL density ≥30%, as indicated by an aHR of 0.08 (95% CI, 0.01 to 0.52) and 0.07 (95% CI, 0.01 to 0.46), respectively. Similar results were demonstrated for other specific survival rates.
    Discussion: The early outcomes of the present study suggest the utility of a strong prognostic factor involving a composite biomarker high PD-L1IC expression along with increased TIL density in HNSCC patients undergoing definitive radiotherapy and radiochemotherapy.
    Trial registration: The study is registered with Clinicaltrials.gov. - NCT05941676.
    Keywords:  PD-L1 expression; head and neck cancer; immune biomarkers; prognosis; tumor-infiltrating lymphocytes
    DOI:  https://doi.org/10.3389/fonc.2024.1346793
  37. Biochem Genet. 2024 Apr 18.
      In this study, single-cell RNA-seq data were collected to analyze the characteristics of Histone deacetylation factor (HDF). The tumor microenvironment (TME) cell clusters related to prognosis and immune response were identified by using CRC tissue transcriptome and immunotherapy cohorts from public repository. We explored the expression characteristics of HDF in stromal cells, macrophages, T lymphocytes, and B lymphocytes of the CRC single-cell dataset TME and further identified 4 to 6 cell subclusters using the expression profiles of HDF-associated genes, respectively. The regulatory role of HDF-associated genes on the CRC tumor microenvironment was explored by using single-cell trajectory analysis, and the cellular subtypes identified by biologically characterized genes were compared with those identified by HDF-associated genes. The interaction of HDF-associated gene-mediated microenvironmental cell subtypes and tumor epithelial cells were explored by using intercellular communication analysis, revealing the molecular regulatory mechanism of tumor epithelial cell heterogeneity. Based on the expression of feature genes mediated by HDF-related genes in the microenvironment T-cell subtypes, enrichment scoring was performed on the feature gene expression in the CRC tumor tissue transcriptome dataset. It was found that the feature gene scoring of microenvironment T-cell subtypes (HDF-TME score) has a certain predictive ability for the prognosis and immunotherapy benefits of CRC tumor patients, providing data support for precise immunotherapy in CRC tumors.
    Keywords:  Colorectal cancer; Histone deacetylases; Histone deacetylation factor; Tumor microenvironment
    DOI:  https://doi.org/10.1007/s10528-024-10730-8