bims-tucedo Biomed News
on Tumor cell dormancy
Issue of 2021‒10‒24
twenty-two papers selected by
Isabel Puig Borreil
Vall d’Hebron Institute of Oncology


  1. Cells. 2021 Oct 09. pii: 2707. [Epub ahead of print]10(10):
      Following efficient tumor therapy, some cancer cells may survive through a dormancy process, contributing to tumor recurrence and worse outcomes. Dormancy is considered a process where most cancer cells in a tumor cell population are quiescent with no, or only slow, proliferation. Recent advances indicate that redox mechanisms control the dormant cancer cell life cycle, including dormancy entrance, long-term dormancy, and metastatic relapse. This regulatory network is orchestrated mainly through redox modification on key regulators or global change of reactive oxygen species (ROS) levels in dormant cancer cells. Encouragingly, several strategies targeting redox signaling, including sleeping, awaking, or killing dormant cancer cells are currently under early clinical evaluation. However, the molecular mechanisms underlying redox control of the dormant cancer cell cycle are poorly understood and need further exploration. In this review, we discuss the underlying molecular basis of redox signaling in the cell life cycle of dormant cancer and the potential redox-based targeting strategies for eliminating dormant cancer cells.
    Keywords:  ROS; cancer dormancy; cancer therapy; redox signaling
    DOI:  https://doi.org/10.3390/cells10102707
  2. Adv Exp Med Biol. 2021 ;1329 35-49
      Tumor cells frequently disseminate to distant organ sites, where they encounter permissive or restrictive environments that enable them to grow and colonize or enter a dormant state. Tumor dormancy is not strictly defined, but generally describes a tumor cell that is non-proliferative or in a state of balanced equilibrium, in which the proliferation rate of the tumor cell or cells is equal to its rate of cell death. The mechanisms that regulate tumor cell entry into and exit from dormancy are poorly understood, but microenvironmental features as well as tumor cell intrinsic factors play an important role in mediating this transition. Upon homing to distant metastatic sites, tumor cells may disseminate into various niches, most frequently the perivascular, hematopoietic stem cell, or endosteal/osteogenic niche. Tumor cells sense the cytokines, growth factors, and chemo-attractants from each of these niches, and tumor cell expression of cognate ligands and receptors can determine whether a tumor cell enters or exits dormancy. In addition to the secreted factors and cell-cell interactions that regulate dormancy, the cellular milieu also impacts upon disseminated tumor cells to promote or restrain their growth in distant metastatic sites. In this chapter we will discuss the role of the osteogenic and perivascular niche on dormant tumor cells, as well as the impact of hypoxia (low oxygen tensions) and the immune system on the restriction and outgrowth of dormant, disseminated tumor cells.
    Keywords:  Angiogenesis; Cytokines; Dissemination; Dormancy; Endosteal niche; Equilibrium; Growth factors; Hematopoietic stem cell; Hypoxia; Immune system; Immunologic dormancy; Inflammation; Osteogenic niche; Perivascular niche; Tumor dormancy
    DOI:  https://doi.org/10.1007/978-3-030-73119-9_2
  3. Cancer Discov. 2021 Oct 22.
      The gut microbiota drives hormone resistance in castration-resistant prostate cancer (CRPC).
    DOI:  https://doi.org/10.1158/2159-8290.CD-RW2021-153
  4. Oncogene. 2021 Oct 21.
      Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-refractory lung adenocarcinoma (LUAD) progression is a major clinical problem. New approaches to predict and prevent acquired resistance to EGFR TKIs are urgently needed. Here, we show that dopamine and cyclic AMP-regulated phosphoprotein, Mr 32000 (DARPP-32) physically recruits ERBB3 (HER3) to EGFR to mediate switching from EGFR homodimers to EGFR:ERBB3 heterodimers to bypass EGFR TKI-mediated inhibition by potentiating ERBB3-dependent activation of oncogenic signaling. In paired LUAD patient-derived specimens before and after EGFR TKI-refractory disease progression, we reveal that DARPP-32 and kinase-activated EGFR and ERBB3 proteins are overexpressed upon acquired resistance. In mice, DARPP-32 ablation sensitizes gefitinib-resistant xenografts to EGFR TKIs, while DARPP-32 overexpression increases gefitinib-refractory LUAD progression in gefitinib-sensitive lung tumors. We introduce a DARPP-32-mediated, ERBB3-dependent mechanism the LUAD cells use to evade EGFR TKI-induced cell death, potentially paving the way for the development of therapies to better combat therapy-refractory LUAD progression.
    DOI:  https://doi.org/10.1038/s41388-021-02028-5
  5. Cancer Res. 2021 Oct 19. pii: canres.1012.2021. [Epub ahead of print]
      Metastasis is the main cause of cancer-related mortality. Despite intense efforts to understand the mechanisms underlying the metastatic process, treatment of metastatic cancer is still challenging. Here we describe a chemotherapy-induced, host-mediated mechanism that promotes remodeling of the extracellular matrix (ECM), ultimately facilitating cancer cell seeding and metastasis. Paclitaxel (PTX) chemotherapy enhanced rapid ECM remodeling and mechano-structural changes in the lungs of tumor-free mice, and the protein expression and activity of the ECM remodeling enzyme lysyl oxidase (LOX) increased in response to PTX. A chimeric mouse mode harboring genetic LOX depletion revealed chemotherapy-induced ECM remodeling was mediated by CD8+ T cells expressing LOX. Consistently, adoptive transfer of CD8+ T cells, but not CD4+ T cells or B cells, from PTX-treated mice to naïve immuno-deprived mice induced pulmonary ECM remodeling. Lastly, in a clinically relevant metastatic breast carcinoma model, LOX inhibition counteracted the metastasis-promoting, ECM-related effects of PTX. This study highlights the role of immune cells in regulating ECM and metastasis following chemotherapy, suggesting that inhibiting chemotherapy-induced ECM remodeling represents a potential therapeutic strategy for metastatic cancer.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-1012
  6. Cancer Immunol Res. 2021 Oct 22. pii: canimm.0247.2021. [Epub ahead of print]
      Combination immunotherapy treatments that recruit both innate and adaptive immunity have the potential to increase response rates by engaging a more complete repertoire of effector mechanisms. Here, we combined intratumoral STimulator of INterferon Genes (STING) agonist therapy with systemically injected extended half-life interleukin-2 (IL2) and anti-PD-1 checkpoint blockade (hereafter CIP therapy) to drive innate and adaptive anti-tumor immunity in models of triple-negative breast cancer. Unlike treatment with the individual components, this trivalent immunotherapy halted primary tumor progression and led to long-term remission for a majority of animals in two spontaneously metastasizing orthotopic breast tumor models, though only as a neoadjuvant therapy but not adjuvant therapy. CIP therapy induced anti-tumor T-cell responses, but protection from metastatic relapse depended on natural killer (NK) cells. The combination of STING agonists with IL2/anti-PD-1 synergized to stimulate sustained granzyme and cytokine expression by lung-infiltrating NK cells. Type I interferons (IFNs) generated as a result of STING agonism, combined with IL2, acted in a positive-feedback loop by enhancing the expression of IFNAR-1 and CD25 on lung NK cells. These results suggest that NK cells can be therapeutically targeted to effectively eliminate tumor metastases.
    DOI:  https://doi.org/10.1158/2326-6066.CIR-21-0247
  7. Oncogene. 2021 Oct 18.
      Human pancreatic ductal adenocarcinoma (PDAC) harboring one KRAS mutant allele often displays increasing genomic loss of the remaining wild-type (WT) allele (known as LOH at KRAS) as tumors progress to metastasis, yet the molecular ramification of this WT allelic loss is unknown. In this study, we showed that the restoration of WT KRAS expression in human PDAC cell lines with LOH at KRAS significantly attenuated the malignancy of PDAC cells both in vitro and in vivo, demonstrating a tumor-suppressive role of the WT KRAS allele. Through RNA-Seq, we identified the HIPPO signaling pathway to be positively regulated by WT KRAS in PDAC cells. In accordance with this observation, PDAC cells with LOH at KRAS exhibited increased nuclear localization and activation of transcriptional co-activator YAP1. Mechanistically, we discovered that WT KRAS expression sequestered YAP1 from the nucleus, through enhanced 14-3-3zeta interaction with phosphorylated YAP1 at S127. Consistently, expression of a constitutively-active YAP1 mutant in PDAC cells bypassed the growth inhibitory effects of WT KRAS. In patient samples, we found that the YAP1-activation genes were significantly upregulated in tumors with LOH at KRAS, and YAP1 nuclear localization predicted poor survival for PDAC patients. Collectively, our results reveal that the WT allelic loss leads to functional activation of YAP1 and enhanced tumor malignancy, which explains the selection advantage of the tumor cells with LOH at KRAS during pancreatic cancer clonal evolution and progression to metastasis, and should be taken into consideration in future therapeutic strategies targeting KRAS.
    DOI:  https://doi.org/10.1038/s41388-021-02040-9
  8. EMBO Mol Med. 2021 Oct 19. e14351
      Understanding the mechanisms underlying evasive resistance in cancer is an unmet medical need to improve the efficacy of current therapies. In this study, a combination of shRNA-mediated synthetic lethality screening and transcriptomic analysis revealed the transcription factors YAP/TAZ as key drivers of Sorafenib resistance in hepatocellular carcinoma (HCC) by repressing Sorafenib-induced ferroptosis. Mechanistically, in a TEAD-dependent manner, YAP/TAZ induce the expression of SLC7A11, a key transporter maintaining intracellular glutathione homeostasis, thus enabling HCC cells to overcome Sorafenib-induced ferroptosis. At the same time, YAP/TAZ sustain the protein stability, nuclear localization, and transcriptional activity of ATF4 which in turn cooperates to induce SLC7A11 expression. Our study uncovers a critical role of YAP/TAZ in the repression of ferroptosis and thus in the establishment of Sorafenib resistance in HCC, highlighting YAP/TAZ-based rewiring strategies as potential approaches to overcome HCC therapy resistance.
    Keywords:  ATF4; Hippo signaling; YAP/TAZ; ferroptosis; liver cancer
    DOI:  https://doi.org/10.15252/emmm.202114351
  9. Blood. 2021 Oct 17. pii: blood.2020008136. [Epub ahead of print]
      Anaplastic large cell lymphomas (ALCLs) frequently carry oncogenic fusions involving the anaplastic lymphoma kinase (ALK) gene. Targeting ALK using tyrosine kinase inhibitors (TKIs) is a therapeutic option in cases relapsed after chemotherapy, but TKI resistance may develop. By applying genomic loss-of-function screens, we identified PTPN1 and PTPN2 phosphatases as consistent top hits driving resistance to ALK TKIs in ALK+ ALCL. Loss of either PTPN1 or PTPN2 induced resistance to ALK TKIs in vitro and in vivo. Mechanistically, we demonstrated that PTPN1 and PTPN2 are phosphatases that bind to and regulate ALK phosphorylation and activity. In turn, oncogenic ALK and STAT3 repress PTPN1 transcription. We found that PTPN1 is also a phosphatase for SHP2, a key mediator of oncogenic ALK signaling. Downstream signaling analysis showed that deletion of PTPN1 or PTPN2 induces resistance to crizotinib by hyperactivating SHP2, the MAPK and JAK/STAT pathways. RNA sequencing of patient samples that developed resistance to ALK TKIs showed downregulation of PTPN1 and PTPN2 associated with upregulation of SHP2 expression. Combination of crizotinib with a SHP2 inhibitor synergically inhibited the growth of wild-type or PTPN1/PTPN2 knock-out ALCL, where it reverted TKI resistance. Thus, we identified PTPN1 and PTPN2 as ALK phosphatases that control sensitivity to ALK TKIs in ALCL, and demonstrated that a combined blockade of SHP2 potentiates the efficacy of ALK inhibition in TKI sensitive and resistant ALK+ ALCL.
    DOI:  https://doi.org/10.1182/blood.2020008136
  10. Cancer Discov. 2021 Oct 22.
      Two distinct tumor microenvironment (TME) states exist in pancreatic cancer and are linked to patient outcome.
    DOI:  https://doi.org/10.1158/2159-8290.CD-RW2021-151
  11. Nat Rev Cancer. 2021 Oct 20.
      Transforming growth factor-β (TGFβ) signalling controls multiple cell fate decisions during development and tissue homeostasis; hence, dysregulation of this pathway can drive several diseases, including cancer. Here we discuss the influence that TGFβ exerts on the composition and behaviour of different cell populations present in the tumour immune microenvironment, and the context-dependent functions of this cytokine in suppressing or promoting cancer. During homeostasis, TGFβ controls inflammatory responses triggered by exposure to the outside milieu in barrier tissues. Lack of TGFβ exacerbates inflammation, leading to tissue damage and cellular transformation. In contrast, as tumours progress, they leverage TGFβ to drive an unrestrained wound-healing programme in cancer-associated fibroblasts, as well as to suppress the adaptive immune system and the innate immune system. In consonance with this key role in reprogramming the tumour microenvironment, emerging data demonstrate that TGFβ-inhibitory therapies can restore cancer immunity. Indeed, this approach can synergize with other immunotherapies - including immune checkpoint blockade - to unleash robust antitumour immune responses in preclinical cancer models. Despite initial challenges in clinical translation, these findings have sparked the development of multiple therapeutic strategies that inhibit the TGFβ pathway, many of which are currently in clinical evaluation.
    DOI:  https://doi.org/10.1038/s41568-021-00413-6
  12. Oncogene. 2021 Oct 21.
      Aberrant protein glycosylation has been shown to have a significant contribution in aggressive cancer, including pancreatic cancer (PC). Emerging evidence has implicated the involvement of cancer stem cells (CSCs) in PC aggressiveness; however, the contribution of glycosylation on self-renewal properties and maintenance of CSC is understudied. Here, using several in vitro and in vivo models lacking C1GALT1 expression, we identified the role of aberrant O-glycosylation in stemness properties and aggressive PC metastasis. A loss in C1GALT1 was found to result in the truncation of O-glycosylation on several glycoproteins with an enrichment of Tn carbohydrate antigen. Mapping of Tn-bearing glycoproteins in C1GALT1 KO cells identified significant Tn enrichment on CSC glycoprotein CD44. Notably, a loss of C1GALT1 in PC cells was found to enhance CSC features (side population-SP, ALDH1+, and tumorspheres) and self-renewal markers NANOG, SOX9, and KLF4. Furthermore, a loss of CD44 in existing C1GALT1 KO cells decreased NANOG expression and CSC features. We determined that O-glycosylation of CD44 activates ERK/NF-kB signaling, which results in increased NANOG expression in PC cells that facilitated the alteration of CSC features, suggesting that NANOG is essential for PC stemness. Finally, we identified that loss of C1GALT1 expression was found to augment tumorigenic and metastatic potential, while an additional loss of CD44 in these cells reversed the effects. Overall, our results identified that truncation of O-glycans on CD44 increases NANOG activation that mediates increased CSC activation.
    DOI:  https://doi.org/10.1038/s41388-021-02047-2
  13. Cell Rep. 2021 Oct 19. pii: S2211-1247(21)01321-8. [Epub ahead of print]37(3): 109854
      Despite the tremendous success of targeted and conventional therapies for lung cancer, therapeutic resistance is a common and major clinical challenge. RNF8 is a ubiquitin E3 ligase that plays essential roles in the DNA damage response; however, its role in the pathogenesis of lung cancer is unclear. Here, we report that RNF8 is overexpressed in lung cancer and positively correlates with the expression of p-Akt and poor survival of patients with non-small-cell lung cancer. In addition, we identify RNF8 as the E3 ligase for regulating the activation of Akt by K63-linked ubiquitination under physiological and genotoxic conditions, which leads to lung cancer cell proliferation and resistance to chemotherapy. Together, our study suggests that RNF8 could be a very promising target in precision medicine for lung cancer.
    Keywords:  Akt; DNA damage response; RNF8; chemoresistance; lung cancer; ubiquitination
    DOI:  https://doi.org/10.1016/j.celrep.2021.109854
  14. Nat Cell Biol. 2021 Oct 21.
      While there is extensive evidence for genetic variation as a basis for treatment resistance, other sources of variation result from cellular plasticity. Using multiple myeloma as an example of an incurable lymphoid malignancy, we show how cancer cells modulate lineage restriction, adapt their enhancer usage and employ cell-intrinsic diversity for survival and treatment escape. By using single-cell transcriptome and chromatin accessibility profiling, we show that distinct transcriptional states co-exist in individual cancer cells and that differential transcriptional regulon usage and enhancer rewiring underlie these alternative transcriptional states. We demonstrate that exposure to standard treatment further promotes transcriptional reprogramming and differential enhancer recruitment while simultaneously reducing developmental potential. Importantly, treatment generates a distinct complement of actionable immunotherapy targets, such as CXCR4, which can be exploited to overcome treatment resistance. Our studies therefore delineate how to transform the cellular plasticity that underlies drug resistance into immuno-oncologic therapeutic opportunities.
    DOI:  https://doi.org/10.1038/s41556-021-00766-y
  15. Cancer Res. 2021 Oct 19. pii: canres.0939.2021. [Epub ahead of print]
      Neoadjuvant immunotherapy, given before surgical resection, is a promising approach to develop systemic antitumor immunity for the treatment of high-risk resectable disease. Here, using syngeneic and orthotopic mouse models of triple-negative breast cancer, we have tested the hypothesis that generation of tumor-specific T-cell responses by induction and activation of tumor-residing Batf3-dependent conventional type 1 dendritic cells (cDC1) before resection improves control of distant metastatic disease and survival. Mice bearing highly metastatic orthotopic tumors were treated with a combinatorial in situ immunomodulation (ISIM) regimen comprised of intratumoral administration of Flt3L, local radiotherapy, and in situ TLR3/CD40 stimulations, followed by surgical resection. Neoadjuvant ISIM generated tumor-specific CD8+ T cells that infiltrated into distant non-irradiated metastatic sites, which delayed the progression of lung metastases and improved survival after the resection of primary tumors. The efficacy of neoadjuvant ISIM was dependent on de novo adaptive T-cell immunity elicited by Batf3-dependent DCs and was enhanced by increasing dose and fractionation of radiotherapy, and early surgical resection after the completion of neoadjuvant ISIM. Importantly, neoadjuvant ISIM synergized with PD-L1 blockade to improve control of distant metastases and prolong survival, while removal of tumor-draining lymph nodes abrogated the antimetastatic efficacy of neoadjuvant ISIM. Our findings illustrate the therapeutic potential of neoadjuvant multimodal intralesional therapy for the treatment of resectable tumors with high risk of relapse.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-0939
  16. Cell Rep. 2021 Oct 19. pii: S2211-1247(21)01312-7. [Epub ahead of print]37(3): 109848
      During tumor progression, lysosome function is often maladaptively upregulated to match the high energy demand required for cancer cell hyper-proliferation and invasion. Here, we report that mucolipin TRP channel 1 (TRPML1), a lysosomal Ca2+ and Zn2+ release channel that regulates multiple aspects of lysosome function, is dramatically upregulated in metastatic melanoma cells compared with normal cells. TRPML-specific synthetic agonists (ML-SAs) are sufficient to induce rapid (within hours) lysosomal Zn2+-dependent necrotic cell death in metastatic melanoma cells while completely sparing normal cells. ML-SA-caused mitochondria swelling and dysfunction lead to cellular ATP depletion. While pharmacological inhibition or genetic silencing of TRPML1 in metastatic melanoma cells prevents such cell death, overexpression of TRPML1 in normal cells confers ML-SA vulnerability. In the melanoma mouse models, ML-SAs exhibit potent in vivo efficacy of suppressing tumor progression. Hence, targeting maladaptively upregulated lysosome machinery can selectively eradicate metastatic tumor cells in vitro and in vivo.
    Keywords:  ML-SAs; ML-SIs; TRPML1; Zn(2+); cell death; lysosome; metastatic melanoma; mitochondria; small molecule
    DOI:  https://doi.org/10.1016/j.celrep.2021.109848
  17. Mol Cancer. 2021 Oct 20. 20(1): 136
      BACKGROUND: Renal Cell Carcinoma (RCC) is difficult to treat with 5-year survival rate of 10% in metastatic patients. Main reasons of therapy failure are lack of validated biomarkers and scarce knowledge of the biological processes occurring during RCC progression. Thus, the investigation of mechanisms regulating RCC progression is fundamental to improve RCC therapy.METHODS: In order to identify molecular markers and gene processes involved in the steps of RCC progression, we generated several cell lines of higher aggressiveness by serially passaging mouse renal cancer RENCA cells in mice and, concomitantly, performed functional genomics analysis of the cells. Multiple cell lines depicting the major steps of tumor progression (including primary tumor growth, survival in the blood circulation and metastatic spread) were generated and analyzed by large-scale transcriptome, genome and methylome analyses. Furthermore, we performed clinical correlations of our datasets. Finally we conducted a computational analysis for predicting the time to relapse based on our molecular data.
    RESULTS: Through in vivo passaging, RENCA cells showed increased aggressiveness by reducing mice survival, enhancing primary tumor growth and lung metastases formation. In addition, transcriptome and methylome analyses showed distinct clustering of the cell lines without genomic variation. Distinct signatures of tumor aggressiveness were revealed and validated in different patient cohorts. In particular, we identified SAA2 and CFB as soluble prognostic and predictive biomarkers of the therapeutic response. Machine learning and mathematical modeling confirmed the importance of CFB and SAA2 together, which had the highest impact on distant metastasis-free survival. From these data sets, a computational model predicting tumor progression and relapse was developed and validated. These results are of great translational significance.
    CONCLUSION: A combination of experimental and mathematical modeling was able to generate meaningful data for the prediction of the clinical evolution of RCC.
    Keywords:  CFB; Computational model; Metastasis; Prognostic markers renal cell carcinoma; SAA2; Systems biology approach; Tumor model
    DOI:  https://doi.org/10.1186/s12943-021-01416-5
  18. Cancer Res. 2021 Oct 20. pii: canres.1456.2021. [Epub ahead of print]
      The dynamic changes of RNA N6-methyl-adenosine (m6A) during cancer progression contribute to quick adaption to microenvironmental changes. Here, we profiled the cancer cell m6A dynamics in the hypoxic tumor niche and its pathological consequences in glioblastoma multiforme (GBM). The m6A demethylase ALKBH5 was induced in GBM models under hypoxic conditions and was associated with a hypoxic gene signature in GBM patient samples. Depletion or inactivation of ALKBH5 in GBM cells significantly suppressed hypoxia-induced tumor-associated macrophage (TAM) recruitment and immunosuppression in allograft tumors. Expression and secretion of CXCL8/IL8 was significantly suppressed in ALKBH5-deficient tumors. However, ALKBH5 did not regulate CXCL8 m6A directly. Instead, hypoxia-induced ALKBH5 erased m6A deposition from the lncRNA NEAT1, stabilizing the transcript and facilitating NEAT1-mediated paraspeckle assembly, which led to relocation of the transcriptional repressor SFPQ from the CXCL8 promoter to paraspeckles and, ultimately, upregulation of CXCL8/IL8 expression. Accordingly, ectopic expression of CXCL8 in ALKBH5-deficient GBM cells partially restored TAM recruitment and tumor progression. Together, this study links hypoxia-induced epitranscriptomic changes to the emergence of an immunosuppressive microenvironment facilitating tumor evasion.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-1456
  19. Nature. 2021 Oct 20.
      Tumours use various strategies to evade immune surveillance1,2. Immunotherapies targeting tumour immune evasion such as immune checkpoint blockade have shown considerable efficacy on multiple cancers3,4 but are ineffective for most patients due to primary or acquired resistance5-7. Recent studies showed that some epigenetic regulators suppress anti-tumour immunity2,8-12, suggesting that epigenetic therapies could boost anti-tumour immune responses and overcome resistance to current immunotherapies. Here we show that, in mouse melanoma models, depletion of KDM5B-an H3K4 demethylase that is critical for melanoma maintenance and drug resistance13-15-induces robust adaptive immune responses and enhances responses to immune checkpoint blockade. Mechanistically, KDM5B recruits the H3K9 methyltransferase SETDB1 to repress endogenous retroelements such as MMVL30 in a demethylase-independent manner. Derepression of these retroelements activates cytosolic RNA-sensing and DNA-sensing pathways and the subsequent type-I interferon response, leading to tumour rejection and induction of immune memory. Our results demonstrate that KDM5B suppresses anti-tumour immunity by epigenetic silencing of retroelements. We therefore reveal roles of KDM5B in heterochromatin regulation and immune evasion in melanoma, opening new paths for the development of KDM5B-targeting and SETDB1-targeting therapies to enhance tumour immunogenicity and overcome immunotherapy resistance.
    DOI:  https://doi.org/10.1038/s41586-021-03994-2
  20. Nat Commun. 2021 Oct 18. 12(1): 6058
      The tumor ecosystem of papillary thyroid carcinoma (PTC) is poorly characterized. Using single-cell RNA sequencing, we profile transcriptomes of 158,577 cells from 11 patients' paratumors, localized/advanced tumors, initially-treated/recurrent lymph nodes and radioactive iodine (RAI)-refractory distant metastases, covering comprehensive clinical courses of PTC. Our data identifies a "cancer-primed" premalignant thyrocyte population with normal morphology but altered transcriptomes. Along the developmental trajectory, we also discover three phenotypes of malignant thyrocytes (follicular-like, partial-epithelial-mesenchymal-transition-like, dedifferentiation-like), whose composition shapes bulk molecular subtypes, tumor characteristics and RAI responses. Furthermore, we uncover a distinct BRAF-like-B subtype with predominant dedifferentiation-like thyrocytes, enriched cancer-associated fibroblasts, worse prognosis and promising prospect of immunotherapy. Moreover, potential vascular-immune crosstalk in PTC provides theoretical basis for combined anti-angiogenic and immunotherapy. Together, our findings provide insight into the PTC ecosystem that suggests potential prognostic and therapeutic implications.
    DOI:  https://doi.org/10.1038/s41467-021-26343-3
  21. Cancer Cell. 2021 Oct 19. pii: S1535-6108(21)00501-8. [Epub ahead of print]
      Nearly one-third of children with medulloblastoma, a malignant embryonal tumor of the cerebellum, succumb to their disease. Conventional response monitoring by imaging and cerebrospinal fluid (CSF) cytology remains challenging, and a marker for measurable residual disease (MRD) is lacking. Here, we show the clinical utility of CSF-derived cell-free DNA (cfDNA) as a biomarker of MRD in serial samples collected from children with medulloblastoma (123 patients, 476 samples) enrolled on a prospective trial. Using low-coverage whole-genome sequencing, tumor-associated copy-number variations in CSF-derived cfDNA are investigated as an MRD surrogate. MRD is detected at baseline in 85% and 54% of patients with metastatic and localized disease, respectively. The number of MRD-positive patients declines with therapy, yet those with persistent MRD have significantly higher risk of progression. Importantly, MRD detection precedes radiographic progression in half who relapse. Our findings advocate for the prospective assessment of CSF-derived liquid biopsies in future trials for medulloblastoma.
    Keywords:  biomarkers; cell-free DNA; cerebrospinal fluid; childhood cancer; liquid biopsy; measurable residual disease; medulloblastoma; microscopic residual disease; minimal residual disease; relapse disease
    DOI:  https://doi.org/10.1016/j.ccell.2021.09.012