bims-tuchim Biomed News
on Tumor-on-chip models
Issue of 2021‒05‒23
sixteen papers selected by
Philipp Albrecht
Friedrich Schiller University


  1. Adv Drug Deliv Rev. 2021 May 17. pii: S0169-409X(21)00164-2. [Epub ahead of print]
      Every year, cancer claims millions of lives around the globe. Unfortunately, model systems that accurately mimic human oncology - a requirement for the development of more effective therapies for these patients - remain elusive. Tumor development is an organ-specific process that involves modification of existing tissue features, recruitment of other cell types, and eventual metastasis to distant organs. Recently, tissue engineered microfluidic devices have emerged as a powerful in vitro tool to model human physiology and pathology with organ-specificity. These organ-on-chip platforms consist of cells cultured in 3D hydrogels and offer precise control over geometry, biological components, and physiochemical properties. Here, we review progress towards organ-specific microfluidic models of the primary and metastatic tumor microenvironments. Despite the field's infancy, these tumor-on-chip models have enabled discoveries about cancer immunobiology and response to therapy. Future work should focus on the development of autologous or multi-organ systems and inclusion of the immune system.
    Keywords:  Tumor microenvironment; metastatic niche; microfluidic model; microphysiological system; organ-on-chip; tissue engineering
    DOI:  https://doi.org/10.1016/j.addr.2021.05.008
  2. J Vis Exp. 2021 Apr 30.
      Complex disease models demand cutting-edge tools able to deliver physiologically and pathologically relevant, actionable insights, and unveil otherwise invisible processes. Advanced cell assays closely mimicking in vivo scenery are establishing themselves as novel ways to visualize and measure the bidirectional tumor-host interplay influencing the progression of cancer. Here we describe two versatile protocols to recreate highly controllable 2D and 3D co-cultures in microdevices, mimicking the complexity of the tumor microenvironment (TME), under natural and therapy-induced immunosurveillance. In section 1, an experimental setting is provided to monitor crosstalk between adherent tumor cells and floating immune populations, by bright field time-lapse microscopy. As an applicative scenario, we analyze the effects of anti-cancer treatments, such as the so-called immunogenic cancer cell death inducers on the recruitment and activation of immune cells. In section 2, 3D tumor-immune microenvironments are assembled in a competitive layout. Differential immune infiltration is monitored by fluorescence snapshots up to 72 h, to evaluate combination therapeutic strategies. In both settings, image processing steps are illustrated to extract a plethora of immune cell parameters (e.g., immune cell migration and interaction, response to therapeutic agents). These simple and powerful methods can be further tailored to simulate the complexity of the TME encompassing the heterogeneity and plasticity of cancer, stromal and immune cells subtypes, as well as their reciprocal interactions as drivers of cancer evolution. The compliance of these rapidly evolving technologies with live-cell high-content imaging can lead to the generation of large informative datasets, bringing forth new challenges. Indeed, the triangle ''co-cultures/microscopy/advanced data analysis" sets the path towards a precise problem parametrization that may assist tailor-made therapeutic protocols. We expect that future integration of cancer-immune on-a-chip with artificial intelligence for high-throughput processing will synergize a large step forward in leveraging the capabilities as predictive and preclinical tools for precision and personalized oncology.
    DOI:  https://doi.org/10.3791/61895
  3. J Cell Sci. 2020 Jan 01. pii: jcs.232470. [Epub ahead of print]
      Mesenchymal stem cells accumulated in tissue specific sites are essential for the regenerative process; however, biological aging and environmental stress can induce senescence - an irreversible state of growth arrest - that not only affects the behavior of cells but also disrupts their ability to restore tissue integrity. While abnormal tissue properties including increased extracellular matrix stiffness are linked with the risk of developing breast cancer, the role and contribution of senescent MSCs to the disease progression to malignancy are not well understood. Here, we investigated senescence associated biophysical changes in MSCs and how they influence cancer cell behavior in a 3D matrix interface model. Although senescent MSCs were far less motile than pre-senescent MSCs, they induced an invasive breast cancer phenotype, characterized by increased spheroid growth and cell invasion in collagen gels. Further analysis of collagen gels using second harmonic generation showed increased collagen density when senescent MSCs were present, suggesting that senescent MSCs actively remodel the surrounding matrix. This study provides direct evidence of the pro-malignant effects of senescent MSCs in tumors.
    Keywords:  Breast cancer; Cancer cell invasion; ECM remodeling; Mesenchymal stem cells; Senescence
    DOI:  https://doi.org/10.1242/jcs.232470
  4. Nat Commun. 2021 05 17. 12(1): 2858
      Tissues are complex mixtures of different cell subtypes, and this diversity is increasingly characterized using high-throughput single cell analysis methods. However, these efforts are hindered, as tissues must first be dissociated into single cell suspensions using methods that are often inefficient, labor-intensive, highly variable, and potentially biased towards certain cell subtypes. Here, we present a microfluidic platform consisting of three tissue processing technologies that combine tissue digestion, disaggregation, and filtration. The platform is evaluated using a diverse array of tissues. For kidney and mammary tumor, microfluidic processing produces 2.5-fold more single cells. Single cell RNA sequencing further reveals that endothelial cells, fibroblasts, and basal epithelium are enriched without affecting stress response. For liver and heart, processing time is dramatically reduced. We also demonstrate that recovery of cells from the system at periodic intervals during processing increases hepatocyte and cardiomyocyte numbers, as well as increases reproducibility from batch-to-batch for all tissues.
    DOI:  https://doi.org/10.1038/s41467-021-23238-1
  5. Curr Opin Cell Biol. 2021 May 12. pii: S0955-0674(21)00045-4. [Epub ahead of print]72 1-9
      Intratumoral heterogeneity is a negative prognostic factor for cancer and commonly attributed to microenvironment-driven genetic mutations and/or the emergence of cancer stem-like cells. How aberrant extracellular matrix (ECM) remodeling regulates the phenotypic diversity of tumor cells, however, remains poorly understood due in part to a lack of model systems that allow isolating the physicochemical heterogeneity of malignancy-associated ECM for mechanistic studies. Here, we review the compositional, microarchitectural, and mechanical hallmarks of cancer-associated ECM and highlight biomaterials and engineering approaches to recapitulate these properties for in vitro and in vivo studies. Subsequently, we describe how such engineered platforms may be explored to define the spatiotemporal dynamics through which cancer-associated ECM remodeling regulates intratumoral heterogeneity and the cancer stem-like cell phenotype. Finally, we highlight future opportunities and technological advances to further elucidate the relationship between tumor-associated ECM dynamics and intratumoral heterogeneity.
    DOI:  https://doi.org/10.1016/j.ceb.2021.04.001
  6. Biomater Sci. 2021 May 17.
      Assessing phenotypic changes in both cancer cells and surrounding cells, which construct the tumour microenvironment, is essential for understanding the role of bi-directional communication among cells in the tumorigenic process. Here, a 3D in vitro cancer-stroma co-culture system, a co-culture disc, was reported for the spatiotemporal image analysis of cancer-stromal cell interactions. Due to their centre-open disc structure, the lung cancer A549 spheroids could be co-cultured with a high concentration of fibroblasts, without gel shrinkage in the long term (>1 month). In the co-culture disc, some populations of applied normal human lung fibroblasts showed morphological and phenotypic changes into activated myofibroblasts (AMFs) with high expression of myo-fibrotic α-smooth muscle actin fibre in the cell, which is a well-known feature of cancer-associated fibroblasts. The AMFs appeared heterogeneously at the boundary of cancer spheroids, which could not be detected by standard mass analysis using a quantitative RT-qPCR system, and they led to A549 cancer cell migration. In addition, the effects of oncogenic or medicinal additives were quantitatively assessed by combining co-culture discs with image analysis. This system provides a new potential technique to analyse the complicated crosstalk among cancer tissue-constructing cells during the tumorigenic process and provides insight into applications for the quantitative evaluation of substances inducing tumorigenesis as well as drugs to prevent and inhibit cancer progression.
    DOI:  https://doi.org/10.1039/d1bm00629k
  7. Immunol Rev. 2021 May 19.
      The tumor microenvironment (TME) has been identified as one of the driving factors of tumor progression and invasion. Within this microenvironment, cancer-associated fibroblasts (CAF) have multiple tumor-promoting functions and play key roles in drug resistance, through multiple mechanisms, including extracellular matrix (ECM) remodeling, production of growth factors, cytokines, and chemokines, and modulation of metabolism and angiogenesis. More recently, a growing body of evidence has shown that CAF also modulate immune cell activity and suppress anti-tumor immune response. In this review, we describe the current knowledge on CAF heterogeneity in terms of identity and functions. Moreover, we analyze how distinct CAF subpopulations differentially interact with immune cells, with a particular focus on T lymphocytes. We address how specific CAF subsets contribute to cancer progression through induction of an immunosuppressive microenvironment. Finally, we highlight potential therapeutic strategies for targeting CAF subpopulations in cancer.
    Keywords:  T lymphocytes; cancer; cancer-associated fibroblasts; heterogeneity; immunosuppression; immunotherapy
    DOI:  https://doi.org/10.1111/imr.12978
  8. Theranostics. 2021 ;11(13): 6393-6406
      Rationale: Endoglin, also known as CD105, is a homo-dimeric membrane glycoprotein required for angiogenesis and serves as a marker for cancer vasculature. In this study, we constructed a bispecific T-cell engager (BiTE) antibody that targets human endoglin and CD3 (hEND-CD3/BiTE). We examined BiTE binding to endoglin-expressing cells and its effects on the cytolytic activity of T cells and cancer development. Methods: The in vitro effects of hEND-CD3/BiTE, including binding to target cells, T-cell activation, proliferation, and cytotoxicity, were examined in endoglin-expressing 293T cells, human umbilical vascular endothelial cells, tumor-derived endothelial cells, and CD3+ T cells. An in vivo xenograft tumor model was established using A549 human lung cancer cells. The therapeutic efficacy of hEND-CD3/BiTE was assessed by monitoring tumor growth, angiogenesis, and mouse survival. Results: hEND-CD3/BiTE specifically bound to endoglin-expressing cells and CD3+ T cells in vitro and stimulated T-cell activation, proliferation, and Th1 cytokine secretion, and promoted T-cell-mediated cytolysis of endoglin-expressing cells. The hEND-CD3/BiTE in vivo caused minimal toxicity to major organs, reduced tumor neoangiogenesis, inhibited tumor growth, and significantly improved mouse survival. Conclusions: Our study demonstrated the therapeutic potential of hEND-CD3/BiTE and provided a novel approach to clinical cancer treatment.
    Keywords:  bispecific T-cell engager antibody; endoglin; immune therapy.; neoangiogenesis
    DOI:  https://doi.org/10.7150/thno.53121
  9. Cancer Discov. 2021 Mar;11(3): 660-677
      Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with a 5-year survival rate of approximately 9%. An improved understanding of PDAC initiation and progression is paramount for discovering strategies to better detect and combat this disease. Although transcriptomic analyses have uncovered distinct molecular subtypes of human PDAC, the factors that influence subtype development remain unclear. Here, we interrogate the impact of cell of origin and different Trp53 alleles on tumor evolution, using a panel of tractable genetically engineered mouse models. Oncogenic KRAS expression, coupled with Trp53 deletion or point mutation, drives PDAC from both acinar and ductal cells. Gene-expression analysis reveals further that ductal cell-derived and acinar cell-derived tumor signatures are enriched in basal-like and classical subtypes of human PDAC, respectively. These findings highlight cell of origin as one factor that influences PDAC molecular subtypes and provide insight into the fundamental impact that the very earliest events in carcinogenesis can have on cancer evolution. SIGNIFICANCE: Although human PDAC has been classified into different molecular subtypes, the etiology of these distinct subtypes remains unclear. Using mouse genetics, we reveal that cell of origin is an important determinant of PDAC molecular subtype. Deciphering the biology underlying pancreatic cancer subtypes may reveal meaningful distinctions that could improve clinical intervention.This article is highlighted in the In This Issue feature, p. 521.
    DOI:  https://doi.org/10.1158/2159-8290.CD-20-0633
  10. Cancer Cell. 2021 May 18. pii: S1535-6108(21)00222-1. [Epub ahead of print]
      The clinical use of molecular targeted therapy is rapidly evolving but has primarily focused on genomic alterations. Transcriptomic analysis offers an opportunity to dissect the complexity of tumors, including the tumor microenvironment (TME), a crucial mediator of cancer progression and therapeutic outcome. TME classification by transcriptomic analysis of >10,000 cancer patients identifies four distinct TME subtypes conserved across 20 different cancers. The TME subtypes correlate with patient response to immunotherapy in multiple cancers, with patients possessing immune-favorable TME subtypes benefiting the most from immunotherapy. Thus, the TME subtypes act as a generalized immunotherapy biomarker across many cancer types due to the inclusion of malignant and microenvironment components. A visual tool integrating transcriptomic and genomic data provides a global tumor portrait, describing the tumor framework, mutational load, immune composition, anti-tumor immunity, and immunosuppressive escape mechanisms. Integrative analyses plus visualization may aid in biomarker discovery and the personalization of therapeutic regimens.
    Keywords:  biomarker discovery; cancer; genomics; integrated analysis; transcriptomics; tumor microenvironment classification
    DOI:  https://doi.org/10.1016/j.ccell.2021.04.014
  11. Nat Biomed Eng. 2021 May;5(5): 429-440
      Avoiding the immune rejection of transplanted T cells is central to the success of allogeneic cancer immunotherapies. One solution to protecting T-cell grafts from immune rejection involves the deletion of allogeneic factors and of factors that activate cytotoxic immune cells. Here we report the generation of hypoimmunogenic cancer-antigen-specific T cells derived from induced pluripotent stem cells (iPSCs) lacking β2-microglobulin, the class-II major histocompatibility complex (MHC) transactivator and the natural killer (NK) cell-ligand poliovirus receptor CD155, and expressing single-chain MHC class-I antigen E. In mouse models of CD20-expressing leukaemia or lymphoma, differentiated T cells expressing a CD20 chimeric antigen receptor largely escaped recognition by NKG2A+ and DNAM-1+ NK cells and by CD8 and CD4 T cells in the allogeneic recipients while maintaining anti-tumour potency. Hypoimmunogenic iPSC-derived T cells may contribute to the creation of off-the-shelf T cell immunotherapies.
    DOI:  https://doi.org/10.1038/s41551-021-00730-z
  12. Lab Chip. 2021 May 18. 21(10): 2008-2018
      Inertial microfluidics is a simple, low cost, efficient size-based separation technique which is being widely investigated for rare-cell isolation and detection. Due to the fixed geometrical dimensions of the current rigid inertial microfluidic systems, most of them are only capable of isolating and separating cells with certain types and sizes. Herein, we report the design, fabrication, and validation of a stretchable inertial microfluidic device with a tuneable separation threshold that can be used for heterogenous mixtures of particles and cells. Stretchability allows for the fine-tuning of the critical sorting size, resulting in a high separation resolution that makes the separation of cells with small size differences possible. We validated the tunability of the separation threshold by stretching the length of a microchannel to separate the particle sizes of interest. We also evaluated the focusing efficiency, flow behaviour, and the positions of cancer cells and white blood cells (WBCs) in an elongated channel, separately. In addition, the performance of the device was verified by isolating cancer cells from WBCs which revealed a high recovery rate and purity. The stretchable chip showed promising results in the separation of cells with comparable sizes. Further validation of the chip using whole blood spiked with cancer cells delivered a 98.6% recovery rate with 90% purity. Elongating a stretchable microfluidic chip enables onsite modification of the dimensions of a microchannel leading to a precise tunability of the separation threshold as well as a high separation resolution.
    DOI:  https://doi.org/10.1039/d1lc00082a
  13. Cell. 2021 May 17. pii: S0092-8674(21)00531-6. [Epub ahead of print]
      Organs are composed of diverse cell types that traverse transient states during organogenesis. To interrogate this diversity during human development, we generate a single-cell transcriptome atlas from multiple developing endodermal organs of the respiratory and gastrointestinal tract. We illuminate cell states, transcription factors, and organ-specific epithelial stem cell and mesenchyme interactions across lineages. We implement the atlas as a high-dimensional search space to benchmark human pluripotent stem cell (hPSC)-derived intestinal organoids (HIOs) under multiple culture conditions. We show that HIOs recapitulate reference cell states and use HIOs to reconstruct the molecular dynamics of intestinal epithelium and mesenchyme emergence. We show that the mesenchyme-derived niche cue NRG1 enhances intestinal stem cell maturation in vitro and that the homeobox transcription factor CDX2 is required for regionalization of intestinal epithelium and mesenchyme in humans. This work combines cell atlases and organoid technologies to understand how human organ development is orchestrated.
    Keywords:  CDX2; NRG1; human endoderm development; intestinal organoids; mesenchyme heterogeneity; multi-organ cell atlas; single-cell transcriptomics
    DOI:  https://doi.org/10.1016/j.cell.2021.04.028
  14. ACS Sens. 2021 May 20.
      Three-dimensional (3D) cell culture based on polymer scaffold provides a promising tool to mimic a physiological microenvironment for drug testing; however, the next-generation cell activity monitoring technology for 3D cell culture is still challenging. Conventionally, drug efficacy evaluation and cell growth heavily rely on cell staining assays, using optical devices or flow cytometry. Here, we report a dual-function polymer scaffold (DFPS) composed of thermosensitive, silver flake- and gold nanoparticle-decorated polymers, enabling conductance change upon cell proliferation or death for in situ cell activity monitoring and drug screening. The cell activity can be quantitatively monitored via measuring the conductance change induced by polymeric network swelling or shrinkage. This novel dual-function system (1) provides a 3D microenvironment to enable the formation and growth of tumor spheroid in vitro and streamlines the harvesting of tumor spheroids through the thermosensitive scaffold and (2) offers a simple and direct quantitative method to monitor 3D cell culture in situ for drug responses. As a proof of concept, we demonstrated that a breast cancer stem cell line MDA-MB-436 was able to form cell spheroids in the scaffold, and the conductance change of the sensor exhibited a linear relationship with cell concentration. To examine its potential in drug screening, cancer spheroids in the cell sensor were treated with paclitaxel (PTX) and docetaxel (DTX), and predicted quantitative evaluation of the cytotoxic effect of drugs was established. Our results indicated that this cell sensing system may hold promising potential in expanding into an array device for high-throughput drug screening.
    Keywords:  3D cell culture; breast cancer; cell sensor; drug screening; thermosensitive polymer
    DOI:  https://doi.org/10.1021/acssensors.0c02266
  15. Proc Natl Acad Sci U S A. 2021 May 25. pii: e2017925118. [Epub ahead of print]118(21):
      The goal of cancer-drug delivery is to achieve high levels of therapeutics within tumors with minimal systemic exposure that could cause toxicity. Producing biologics directly in situ where they diffuse and act locally is an attractive alternative to direct administration of recombinant therapeutics, as secretion by the tumor itself provides high local concentrations that act in a paracrine fashion continuously over an extended duration (paracrine delivery). We have engineered a SHielded, REtargeted ADenovirus (SHREAD) gene therapy platform that targets specific cells based on chosen surface markers and converts them into biofactories secreting therapeutics. In a proof of concept, a clinically approved antibody is delivered to orthotopic tumors in a model system in which precise biodistribution can be determined using tissue clearing with passive CLARITY technique (PACT) with high-resolution three-dimensional imaging and feature quantification within the tumors made transparent. We demonstrate high levels of tumor cell-specific transduction and significant and durable antibody production. PACT gives a localized quantification of the secreted therapeutic and allows us to directly observe enhanced pore formation in the tumor and destruction of the intact vasculature. In situ production of the antibody led to an 1,800-fold enhanced tumor-to-serum antibody concentration ratio compared to direct administration. Our detailed biochemical and microscopic analyses thus show that paracrine delivery with SHREAD could enable the use of highly potent therapeutic combinations, including those with systemic toxicity, to reach adequate therapeutic windows.
    Keywords:  3D reconstruction; PACT tissue clearing; adenovirus; cancer therapy; gene therapy
    DOI:  https://doi.org/10.1073/pnas.2017925118
  16. Lab Chip. 2021 May 19.
      Interest in recapitulating in vivo phenomena in vitro using organ-on-a-chip technology has grown rapidly and with it, attention to the types of fluid flow experienced in the body has followed suit. These platforms offer distinct advantages over in vivo models with regards to human relevance, cost, and control of inputs (e.g., controlled manipulation of biomechanical cues from fluid perfusion). Given the critical role biophysical forces play in several tissues and organs, it is therefore imperative that engineered in vitro platforms capture the complex, unique flow profiles experienced in the body that are intimately tied with organ function. In this review, we outline the complex and unique flow regimes experienced by three different organ systems: blood vasculature, lymphatic vasculature, and the intestinal system. We highlight current state-of-the-art platforms that strive to replicate physiological flows within engineered tissues while introducing potential limitations in current approaches.
    DOI:  https://doi.org/10.1039/d1lc00014d