bims-tuchim Biomed News
on Tumor-on-chip models
Issue of 2021–11–07
two papers selected by
Philipp Albrecht, Friedrich Schiller University



  1. Front Bioeng Biotechnol. 2021 ;9 761846
      Lung cancer is the most frequently diagnosed cancer worldwide and the one that causes the highest mortality. In order to understand the disease and to develop new treatments, in vitro human lung cancer model systems which imitate the physiological conditions is of high significance. In this study, a human 3D lung cancer model was established that features the organization of a tumor with focus on tumor angiogenesis. Vascular networks were formed by co-culture of human umbilical vein endothelial cells and adipose tissue-derived mesenchymal stem cells (ASC) for 14 days in fibrin. A part of the pre-vascularized fibrin gel was replaced by fibrin gel containing lung cancer cells (A549) to form tri-cultures. This 3D cancer model system was cultured under different culture conditions and its behaviour after treatment with different concentrations of tumor-specific therapeutics was evaluated. The evaluation was performed by measurement of metabolic activity, viability, quantification of two-photon laser scanning microscopy and measurement of the proangiogenic factor vascular endothelial growth factor in the supernatant. Hypoxic conditions promoted vascularization compared to normoxic cultured controls in co- and tri-cultures as shown by significantly increased vascular structures, longer structures with a higher area and volume, and secretion of vascular endothelial growth factor. Cancer cells also promoted vascularization. Treatment with 50 µM gefitinib or 50 nM paclitaxel decreased the vascularization significantly. VEGF secretion was only reduced after treatment with gefitinib, while in contrast secretion remained constant during medication with paclitaxel. The findings suggest that the herein described 3D lung cancer model provides a novel platform to investigate the angiogenic potential of cancer cells and its responses to therapeutics. Thus, it can serve as a promising approach for the development and patient-specific pre-selection of anticancer treatment.
    Keywords:  3D in vitro cancer models; drug testing; fibrin gels; lung cancer; tumor model
    DOI:  https://doi.org/10.3389/fbioe.2021.761846
  2. Cell Death Dis. 2021 Oct 30. 12(11): 1033
      Lipopolysaccharide (LPS) as an important inflammatory mediator activates the innate/adaptive immune system. The existence of LPS in pancreatic ductal adenocarcinoma (PDAC) has been reported, however, its biological function in PDAC remains unclear. Here, we demonstrated that circulating and tumoral LPS was significantly increased by intestinal leakage in the orthotopic murine PDAC model, and LPS administration promoted T cell infiltration but exhaustion paradoxically in the subcutaneous murine PDAC model. By bioinformatic analysis, Toll-like receptor 4 (TLR4), LPS receptor, was further found to enrich in immune tolerance signaling in PDAC tissues. Then, a significant positive correlation was found between TLR4 and programmed death ligand-1 (PD-L1) in clinical PDAC tissues, as well as serum LPS and tumoral PD-L1. Meanwhile, LPS stimulation in vitro and in vivo obviously upregulated tumor PD-L1 expression, and effectively promoted cancer cells resistance to T cell cytotoxicity. Mechanistically, the activation of TLR4/MyD88/AKT/NF-κB cascade was found to participate in LPS mediated PD-L1 transcription via binding to its promoter regions, which was enhanced by crosstalk between NF-κB and AKT pathways. Finally, PD-L1 blockade could significantly reverse LPS-induced immune escape, and synergized with LPS treatment. Taken together, LPS can remodel tumor microenvironment, and synergize with PD-L1 blockade to suppress tumor growth, which may be a promising comprehensive strategy for PDAC.
    DOI:  https://doi.org/10.1038/s41419-021-04293-4