Mol Imaging Biol. 2025 Feb 05.
PURPOSE: Lymphodepletion before tumor-infiltrating lymphocytes (TIL) infusion can activate the immune system, enhance the release of homeostatic cytokines, and decrease the number of immunosuppressive cells. This process is crucial for improving the therapeutic efficacy of TIL therapy. However, the challenge of in vivo assessing TILs targeting tumors limits the optimization of lymphodepleting conditioning regimen (LDC).
PROCEDURES: This study aims to employ magnetic particle imaging (MPI) and fluorescence molecular imaging (FMI) to monitor TIL biodistribution in vivo and optimize LDC in triple-negative breast cancer TIL therapy. MPI provides quantitative imaging capabilities without depth limitations, effectively complementing the high sensitivity of FMI. The efficacy of different LDCs in enhancing TIL therapy was assessed using FMI, and MPI quantified the number of TILs accumulated in the 4T1 tumor.
RESULTS: TILs preserved viability, phenotypes, and anti-tumor efficacy after being labeled with superparamagnetic iron oxide and fluorescence dye DiR. The dual-modality imaging system effectively discerned variations in LDC treatments that enhanced TIL therapy. Compared to TIL monotherapy, lymphodepletion with TIL therapy improves tumor dual-modality imaging signal intensity, increases the expression of monocyte chemotactic protein-1 in serum and tumor tissue, and enhances the therapeutic effect of TILs.
CONCLUSION: Our results confirm the utility of optical-magnetic dual-modality imaging for tracking the biodistribution of TILs in vivo. With the help of optical-magnetic dual-modality imaging, we successfully optimize TIL combination therapy. Optical-magnetic dual-modality imaging provides a new approach to develop personalized immunotherapy strategies and mine potential therapeutic mechanisms for TIL.
Keywords: Fluorescence molecular imaging; Lymphodepletion; Magnetic particle imaging; Triple-negative breast cancer; Tumor infiltrating lymphocyte therapy