bims-unfpre Biomed News
on Unfolded protein response
Issue of 2020‒08‒23
eight papers selected by
Susan Logue
University of Manitoba


  1. Cell Death Dis. 2020 Aug 03. 11(8): 648
      Caveolin-1 (CAV1), is a broadly expressed, membrane-associated scaffolding protein that acts both, as a tumor suppressor and a promoter of metastasis, depending on the type of cancer and stage. CAV1 is downregulated in human tumors, tumor cell lines and oncogene-transformed cells. The tumor suppressor activity of CAV1 is generally associated with its presence at the plasma membrane, where it participates, together with cavins, in the formation of caveolae and also has been suggested to interact with and inhibit a wide variety of proteins through interactions mediated by the scaffolding domain. However, a pool of CAV1 is also located at the endoplasmic reticulum (ER), modulating the secretory pathway in a manner dependent on serine-80 (S80) phosphorylation. In melanoma cells, CAV1 expression suppresses tumor formation, but the protein is largely absent from the plasma membrane and does not form caveolae. Perturbations to the function of the ER are emerging as a central driver of cancer, highlighting the activation of the unfolded protein response (UPR), a central pathway involved in stress mitigation. Here we provide evidence indicating that the expression of CAV1 represses the activation of the UPR in vitro and in solid tumors, reflected in the attenuation of PERK and IRE1α signaling. These effects correlated with increased susceptibility of cells to ER stress and hypoxia. Interestingly, the tumor suppressor activity of CAV1 was abrogated by site-directed mutagenesis of S80, correlating with a reduced ability to repress the UPR. We conclude that the tumor suppression by CAV1 involves the attenuation of the UPR, and identified S80 as essential in this context. This suggests that intracellular CAV1 regulates cancer through alternative signaling outputs.
    DOI:  https://doi.org/10.1038/s41419-020-02792-4
  2. Cells. 2020 Aug 20. pii: E1928. [Epub ahead of print]9(9):
      The endoplasmic reticulum (ER) stress response and autophagy are important cellular responses that determine cell fate and whose dysregulation is implicated in the perturbation of homeostasis and diseases. Tonicity-responsive enhancer-binding protein (TonEBP, also called NFAT5) is a pleiotropic stress protein that mediates both protective and pathological cellular responses. Here, we examined the role of TonEBP in β-cell survival under ER stress. We found that TonEBP increases β-cell survival under ER stress by enhancing autophagy. The level of TonEBP protein increased under ER stress due to a reduction in its degradation via the ubiquitin-proteasome pathway. In response to ER stress, TonEBP increased autophagosome formations and suppressed the accumulation of protein aggregates and β-cell death. The Rel-homology domain of TonEBP interacted with FIP200, which is essential for the initiation of autophagy, and was required for autophagy and cell survival upon exposure to ER stress. Mice in which TonEBP was specifically deleted in pancreatic endocrine progenitor cells exhibited defective glucose homeostasis and a loss of islet mass. Taken together, these findings demonstrate that TonEBP protects against ER stress-induced β-cell death by enhancing autophagy.
    Keywords:  FIP200; NFAT5; UPR; autophagy initiation; islet; unfolded protein response
    DOI:  https://doi.org/10.3390/cells9091928
  3. Mutat Res. 2020 Jul - Sep;785:pii: S1383-5742(20)30041-7. [Epub ahead of print]785 108321
      BRAF is a member of the RAF family of serine/threonine-specific protein kinases. Oncogenic BRAF, in particular, BRAF V600E, can disturb the normal protein folding machinery in the endoplasmic reticulum (ER) leading to accumulation of unfolded/misfolded proteins in the ER lumen, a condition known as endoplasmic reticulum (ER) stress. To alleviate such conditions, ER-stressed cells have developed a highly robust and adaptable signaling network known as unfolded protein response (UPR). UPR is ordinarily a cytoprotective response and usually operates through the induction of autophagy, an intracellular lysosomal degradation pathway that directs damaged proteins, protein aggregates, and damaged organelles for bulk degradation and recycling. Both ER stress and autophagy are involved in the progression and chemoresistance of melanoma. Melanoma, which arises as a result of malignant transformation of melanocytes, exhibits exceptionally high therapeutic resistance. Many mechanisms of therapeutic resistance have been identified in individual melanoma patients and in preclinical BRAF-driven melanoma models. Recently, it has been recognized that oncogenic BRAF interacts with GRP78 and removes its inhibitory influence on the three fundamental ER stress sensors of UPR, PERK, IRE1α, and ATF6. Dissociation of GRP78 from these ER stress sensors prompts UPR that subsequently activates cytoprotective autophagy. Thus, pharmacological inhibition of BRAF-induced ER stress-mediated autophagy can potentially resensitize BRAF mutant melanoma tumors to apoptosis. However, the underlying molecular mechanism of how oncogenic BRAF elevates the basal level of ER stress-mediated autophagy in melanoma tumors is not well characterized. A better understanding of the crosstalk between oncogenic BRAF, ER stress and autophagy may provide a rationale for improving existing cancer therapies and identify novel targets for therapeutic intervention of melanoma.
    Keywords:  Autophagy; Chemoresistance; Endoplasmic reticulum (ER) stress; Melanoma; Unfolding protein response
    DOI:  https://doi.org/10.1016/j.mrrev.2020.108321
  4. Cancers (Basel). 2020 Aug 20. pii: E2357. [Epub ahead of print]12(9):
      Matrix metalloproteinase 11 (MMP11) is an extracellular proteolytic enzyme belonging to the matrix metalloproteinase (MMP11) family. These proteases are involved in extracellular matrix (ECM) remodeling and activation of latent factors. MMP11 is a negative regulator of adipose tissue development and controls energy metabolism in vivo. In cancer, MMP11 expression is associated with poorer survival, and preclinical studies in mice showed that MMP11 accelerates tumor growth. How the metabolic role of MMP11 contributes to cancer development is poorly understood. To address this issue, we developed a series of preclinical mouse mammary gland tumor models by genetic engineering. Tumor growth was studied in mice either deficient (Loss of Function-LOF) or overexpressing MMP11 (Gain of Function-GOF) crossed with a transgenic model of breast cancer induced by the polyoma middle T antigen (PyMT) driven by the murine mammary tumor virus promoter (MMTV) (MMTV-PyMT). Both GOF and LOF models support roles for MMP11, favoring early tumor growth by increasing proliferation and reducing apoptosis. Of interest, MMP11 promotes Insulin-like Growth Factor-1 (IGF1)/protein kinase B (AKT)/Forkhead box protein O1 (FoxO1) signaling and is associated with a metabolic switch in the tumor, activation of the endoplasmic reticulum stress response, and an alteration in the mitochondrial unfolded protein response with decreased proteasome activity. In addition, high resonance magic angle spinning (HRMAS) metabolomics analysis of tumors from both models established a metabolic signature that favors tumorigenesis when MMP11 is overexpressed. These data support the idea that MMP11 contributes to an adaptive metabolic response, named metabolic flexibility, promoting cancer growth.
    Keywords:  UPRER; UPRmt; Warburg effect; breast cancer; metabolic flexibility; metabolomics
    DOI:  https://doi.org/10.3390/cancers12092357
  5. Cell Death Dis. 2020 Aug 11. 11(8): 691
      Endoplasmic reticulum stress (ER stress) just like a double-edged sword depending on different conditions in the development of multiple hepatic diseases. But the molecular mechanisms of functional conversion during ER stress have not been fully elucidated. In this study, we aim to illustrate the role of PPARα and the subtle mechanism in the functional conversion of ER stress. Tunicamycin (TM) and thapsigargin (TG), as ER stress inducers, were used to induce ER stress in AML12 cells. During the ER stress, qRT-PCR and immunoblotting was used to measure the expression levels of GRP78 and CHOP which show a gradually increasing trend, while PPARα and autophagy was significantly activated in the early stage but was inhibited in the late stage. Moreover, PPARα inhibition by siRNA promoted cell injury in the mild-ER stress and PPARα activation by WY-14643 reduced cell apoptosis in the serious ER stress. In the mild-ER stress with PPARα knocked down, activation of autophagy by rapamycin significantly improved cell survival, in the serious ER stress with PPARα activation, inhibition of autophagy by 3-MA aggravate cell injury. In addition, in the mild-ER stress with PPARα knocked down, CHOP knocked down by siRNA reduced cell apoptosis, in the serious ER stress activated PPARα, CHOP over-expression mediated by lentiviral vector contributed to serious cell injury. Furthermore, C57BL/6 mice was used to induce ER stress with TM intraperitoneal injection, PPARα and autophagy was upregulated in the mild-ER stress while downregulated in the serious ER stress, measured by qRT-PCR and immunoblotting, further confirmed the finding in vitro. Our results firstly demonstrated that PPARα is a key molecule in the functional conversion of ER stress: protective effects in the mild ER stress was mediated by PPARα-autophagy pathway and destructive effects in the serious ER stress was mediated by PPARα-CHOP pathway.
    DOI:  https://doi.org/10.1038/s41419-020-02811-4
  6. J Cell Mol Med. 2020 Aug 18.
      The endoplasmic reticulum (ER) adapts to stress by activating a signalling cascade known as the ER stress response. While ER stress signalling is a central component of the cellular defence against environmental insult, persistent activation is thought to contribute to the progression of various metabolic complications via loss of protein function and cell death. Despite its importance however, whether and how ER stress impacts morbidity and mortality in conditions of hypermetabolism remain unclear. In this study, we discovered that chronic ER stress response plays a role in mediating adverse outcomes that occur after major trauma. Using a murine model of thermal injury, we show that induction of ER stress with Tunicamycin not only increased mortality but also resulted in hepatic damage and hepatic steatosis. Importantly, post-burn treatment with chaperone ER stress inhibitors attenuated hepatic ER stress and improved organ function following injury. Our study identifies ER stress as a potential hub of the signalling network affecting multiple aspects of metabolism after major trauma and as a novel potential molecular target to improve the clinical outcomes of severely burned patients.
    Keywords:  ER stress; burns; hypermetabolism; liver; trauma; unfolded protein response
    DOI:  https://doi.org/10.1111/jcmm.15548
  7. FASEB J. 2020 Aug 19.
      Endoplasmic reticulum (ER) stress response has been implicated in a variety of pathophysiological conditions, including infectious and inflammatory diseases. However, its contribution in ocular bacterial infections, such as endophthalmitis, which often cause blindness is not known. Here, using a mouse model of Staphylococcus (S.) aureus endophthalmitis, our study demonstrates the induction of inositol-requiring enzyme 1α (IRE1α) and splicing of X-box binding protein-1 (Xbp1) branch of the ER-stress pathway, but not the other classical ER stress sensors. Interestingly, S aureus-induced ER stress response was found to be dependent on Toll-like receptor 2 (TLR2), as evident by reduced expression of IRE1α and Xbp1 mRNA splicing in TLR2 knockout mouse retina. Pharmacological inhibition of IRE1α using 4µ8C or experiments utilizing IRE1α-/- macrophages revealed that IRE1α positively regulates S aureus-induced inflammatory responses. Moreover, IRE1α inhibition attenuated S aureus-triggered NF-κB, p38, and ERK pathways activation and cells treated with these pathway-specific inhibitors reduced Xbp1 splicing, suggesting a positive feedback inhibition. In vivo, inhibition of IRE1α diminished the intraocular inflammation and reduced PMN infiltration in mouse eyes, but, increased the bacterial burden and caused more retinal tissue damage. These results revealed a critical role of the IRE1α/XBP1 pathway as a regulator of TLR2-mediated protective innate immune responses in S aureus-induced endophthalmitis.
    Keywords:   S aureus ; endophthalmitis; endoplasmic reticulum (ER) stress; inflammation; microglia; reactive oxygen species (ROS); retina; toll-like receptor 2 (TLR2)
    DOI:  https://doi.org/10.1096/fj.202001393R
  8. Open Biol. 2020 Aug;10(8): 200089
      Hsp70 chaperones interact with substrate proteins in a coordinated fashion that is regulated by nucleotides and enhanced by assisting cochaperones. There are numerous homologues and isoforms of Hsp70 that participate in a wide variety of cellular functions. This diversity can facilitate adaption or specialization based on particular biological activity and location within the cell. In this review, we highlight two specialized binding partner proteins, Tim44 and IRE1, that interact with Hsp70 at the membrane in order to serve their respective roles in protein translocation and unfolded protein response signalling. Recent mechanistic data suggest analogy in the way the two Hsp70 homologues (BiP and mtHsp70) can bind and release from IRE1 and Tim44 upon substrate engagement. These shared mechanistic features may underlie how Hsp70 interacts with specialized binding partners and may extend our understanding of the mechanistic repertoire that Hsp70 chaperones possess.
    Keywords:  BiP; Hsp70 chaperones; IRE1; Tim44; UPR; protein translocation
    DOI:  https://doi.org/10.1098/rsob.200089