Mol Med. 2023 Apr 24. 29(1): 57
Yifei Liu,
Lei Zhang,
Shumin Zhang,
Jialu Liu,
Xiaohui Li,
Kexin Yang,
Danyi Yang,
Yu Liu,
Lin Sun,
Fuyou Liu,
Li Xiao.
BACKGROUND: Mitochondrial quality control (MQC) plays a critical role in the progression of tubulointerstitial injury in diabetic kidney disease (DKD). The mitochondrial unfolded protein response (UPRmt), which is an important MQC process, is activated to maintain mitochondrial protein homeostasis in response to mitochondrial stress. Activating transcription factor 5 (ATF5) is critical in the mammalian UPRmt via mitochondria-nuclear translocation. However, the role of ATF5 and UPRmt in tubular injury under DKD conditions is unknown.
METHODS: ATF5 and UPRmt-related proteins including heat shock protein 60 (HSP60) and Lon peptidase 1 (LONP1), in DKD patients and db/db mice were examined by immunohistochemistry (IHC) and western blot analysis. Eight-week-old db/db mice were injected with ATF5-shRNA lentiviruses via the tail vein, and a negative lentivirus was used as a control. The mice were euthanized at 12 weeks, and dihydroethidium (DHE) and TdT-mediated dUTP nick end labeling (TUNEL) assays were performed to evaluate reactive oxygen species (ROS) production and apoptosis in kidney sections, respectively. In vitro, ATF5-siRNA, ATF5 overexpression plasmids or HSP60-siRNA were transfected into HK-2 cells to evaluate the effect of ATF5 and HSP60 on tubular injury under ambient hyperglycemic conditions. Mitochondrial superoxide (MitoSOX) staining was used to gauge mitochondrial oxidative stress levels, and the early stage of cell apoptosis was examined by Annexin V-FITC kits.
RESULTS: Increased ATF5, HSP60 and LONP1 expression was observed in the kidney tissue of DKD patients and db/db mice and was tightly correlated with tubular damage. The inhibition of HSP60 and LONP1, improvements in serum creatinine, tubulointerstitial fibrosis and apoptosis were observed in db/db mice treated with lentiviruses carrying ATF5 shRNA. In vitro, the expression of ATF5 was increased in HK-2 cells exposed to high glucose (HG) in a time-dependent manner, which was accompanied by the overexpression of HSP60, fibronectin (FN) and cleaved-caspase3 (C-CAS3). ATF5-siRNA transfection inhibited the expression of HSP60 and LONP1, which was accompanied by reduced oxidative stress and apoptosis in HK-2 cells exposed to sustained exogenous high glucose. ATF5 overexpression exacerbated these impairments. HSP60-siRNA transfection blocked the effect of ATF5 on HK-2 cells exposed to continuous HG treatment. Interestingly, ATF5 inhibition exacerbated mitochondrial ROS levels and apoptosis in HK-2 cells in the early period of HG intervention (6 h).
CONCLUSIONS: ATF5 could exert a protective effect in a very early stage but promoted tubulointerstitial injury by regulating HSP60 and the UPRmt pathway under DKD conditions, providing a potential target for the prevention of DKD progression.
Keywords: ATF5; Apoptosis; Diabetic kidney disease; Oxidative stress; Tubular cell; UPRmt