J Biol Chem. 2024 Apr 17. pii: S0021-9258(24)01797-6. [Epub ahead of print] 107296
The modification of nuclear, cytoplasmic, and mitochondrial proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is an essential post-translational modification common in metazoans. O-GlcNAc is cycled on and off proteins in response to environmental and physiological stimuli impacting protein function, which, in turn, tunes pathways that include transcription, translation, proteostasis, signal transduction, and metabolism. One class of stimulus that induces rapid and dynamic changes to O-GlcNAc is cellular injury, resulting from environmental stress (for instance, heat shock), hypoxia/reoxygenation injury, ischemia reperfusion injury (heart attack, stroke, trauma hemorrhage), and sepsis. Acute elevation of O-GlcNAc before or after injury reduces apoptosis and necrosis, suggesting that injury-induced changes in O-GlcNAcylation regulate cell fate decisions. However, prolonged elevation or reduction in O-GlcNAc leads to a maladaptive response and is associated with pathologies such as hypertrophy and heart failure. In this review, we discuss the impact of O-GlcNAc in both acute and prolonged models of injury with a focus on the heart and biological mechanisms that underpin cell survival.
Keywords: Autophagy; Cardioprotection; Cellular Stress Response; Chaperone; ER Stress; Glycoprotein; Heart Failure; Hypertrophy; Integrated Stress Response