bims-unfpre Biomed News
on Unfolded protein response
Issue of 2024‒06‒30
four papers selected by
Susan Logue, University of Manitoba



  1. PNAS Nexus. 2024 Jun;3(6): pgae229
      The unfolded protein response (UPR) is a widespread signal transduction pathway triggered by endoplasmic reticulum (ER) stress. Because calcium (Ca2+) is a key factor in the maintenance of ER homeostasis, massive Ca2+ depletion of the ER is a potent inducer of ER stress. Although moderate changes in ER Ca2+ drive the ubiquitous Ca2+ signaling pathways, a possible incremental relationship between UPR activation and Ca2+ changes has yet to be described. Here, we determine the sensitivity and time-dependency of activation of the three ER stress sensors, inositol-requiring protein 1 alpha (IRE1α), protein kinase R-like ER kinase (PERK), and activating transcription factor 6 alpha (ATF6α) in response to controlled changes in the concentration of ER Ca2+ in human cultured cells. Combining Ca2+ imaging, fluorescence recovery after photobleaching experiments, biochemical analyses, and mathematical modeling, we uncover a nonlinear rate of activation of the IRE1α branch of UPR, as compared to the PERK and ATF6α branches that become activated gradually with time and are sensitive to more important ER Ca2+ depletions. However, the three arms are all activated within a 1 h timescale. The model predicted the deactivation of PERK and IRE1α upon refilling the ER with Ca2+. Accordingly, we showed that ER Ca2+ replenishment leads to the complete reversion of IRE1α and PERK phosphorylation in less than 15 min, thus revealing the highly plastic character of the activation of the upstream UPR sensors. In conclusion, our results reveal a dynamic and dose-sensitive Ca2+-dependent activation/deactivation cycle of UPR induction, which could tightly control cell fate upon acute and/or chronic stress.
    Keywords:  ER stress; UPR reversion; calcium signaling; computational modeling
    DOI:  https://doi.org/10.1093/pnasnexus/pgae229
  2. Leukemia. 2024 Jun 22.
      Malignant growth relies on rapid protein synthesis frequently leading to endoplasmic reticulum (ER) overload and accumulation of unfolded or misfolded protein in this cellular compartment. In the ER, protein homeostasis is finely regulated by a mechanism called the unfolded protein response (UPR), involving the activation of signalization pathways mediated by three transmembrane proteins, namely PERK, IRE1 and ATF6. IRE1 endoribonuclease activation leads in particular to the splicing of the cytosolic mRNA encoding the key UPR-specific transcription factor XBP1s. Our study shows that sustained activation of XBP1s expression in acute myeloid leukemia (AML) cells induces apoptosis in vitro and in vivo, whereas a moderate XBP1s expression sensitizes cells to chemotherapeutic treatments. ChIP-seq experiments identified specific XBP1s target genes including the MIR22HG lncRNA, the precursor transcript of microRNA-22-3p. miR-22-3p upregulation by XBP1s or forced expression of miR-22 significantly decreases cell's viability and sensitizes leukemic cells to chemotherapy. We found that miR-22-3p intracellular effects result at least partially from the targeting of the mRNA encoding the deacetylase sirtuin-1 (SIRT1), a well-established pro-survival factor. Therefore, this novel XBP1s/miR-22/SIRT1 axis identified could play a pivotal role in the proliferation and chemotherapeutic response of leukemic cells.
    DOI:  https://doi.org/10.1038/s41375-024-02321-8
  3. Front Biosci (Landmark Ed). 2024 Jun 20. 29(6): 221
      The endoplasmic reticulum (ER) played an important role in the folding, assembly and post-translational modification of proteins. ER homeostasis could be disrupted by the accumulation of misfolded proteins, elevated reactive oxygen species (ROS) levels, and abnormal Ca2+ signaling, which was referred to ER stress (ERS). Ferroptosis was a unique programmed cell death model mediated by iron-dependent phospholipid peroxidation and multiple signaling pathways. The changes of mitochondrial structure, the damage of glutathione peroxidase 4 (GPX4) and excess accumulation of iron were the main characteristics of ferroptosis. ROS produced by ferroptosis can interfere with the activity of protein-folding enzymes, leading to the accumulation of large amounts of unfolded proteins, thus causing ERS. On the contrary, the increase of ERS level could promote ferroptosis by the accumulation of iron ion and lipid peroxide, the up-regulation of ferroptosis related genes. At present, the studies on the relationship between ferroptosis and ERS were one-sided and lack of in-depth studies on the interaction mechanism. This review aimed to explore the molecular mechanism of cross-talk between ferroptosis and ERS, and provide new strategies and targets for the treatment of liver diseases.
    Keywords:  crosstalk; endoplasmic reticulum stress; ferroptosis; liver disease
    DOI:  https://doi.org/10.31083/j.fbl2906221
  4. J Cell Physiol. 2024 Jun 24.
      In eukaryotes, Hsp90B1 serves as a vital chaperonin, facilitating the accurate folding of proteins. Interestingly, Hsp90B1 exhibits contrasting roles in the development of various types of cancers, although the underlying reasons for this duality remain enigmatic. Through the utilization of the Drosophila model, this study unveils the functional significance of Gp93, the Drosophila ortholog of Hsp90B1, which hitherto had limited reported developmental functions. Employing the Drosophila cell invasion model, we elucidated the pivotal role of Gp93 in regulating cell invasion and modulating c-Jun N-terminal kinase (JNK) activation. Furthermore, our investigation highlights the involvement of the unfolded protein response-associated IRE1/XBP1 pathway in governing Gp93 depletion-induced, JNK-dependent cell invasion. Collectively, these findings not only uncover a novel molecular function of Gp93 in Drosophila, but also underscore a significant consideration pertaining to the testing of Hsp90B1 inhibitors in cancer therapy.
    Keywords:  Drosophila; Gp93; JNK signaling; cell invasion
    DOI:  https://doi.org/10.1002/jcp.31294