bims-unfpre Biomed News
on Unfolded protein response
Issue of 2024‒11‒10
three papers selected by
Susan Logue, University of Manitoba



  1. J Am Heart Assoc. 2024 Nov 05. 13(21): e035193
      BACKGROUND: Sesn2 (Sestrin2) is a stress-induced protein that provides protective effects during myocardial ischemia and reperfusion (I/R) injury, while endoplasmic reticulum (ER) stress may be a pivotal mediator of I/R injury. The goal of this study was to determine whether Sesn2-mTOR (mammalian target of rapamycin) signaling regulates ER stress during myocardial I/R.METHODS AND RESULTS: In vivo cardiac I/R was induced by ligation and subsequent release of the left anterior descending coronary artery in wild-type (WT) and cardiac-specific Sesn2 knockout (Sesn2cKO) mice. At 6 hours and 24 hours after reperfusion, cardiac function was evaluated, and heart samples were collected for analysis. I/R induced cardiac ER stress and upregulated Sesn2 mRNA and protein levels. Inhibiting ER stress with 4-phenylbutyric acid reduced infarct size by 37.5%, improved cardiac systolic function, and mitigated myocardial cell apoptosis post-I/R. Hearts from Sesn2cKO mice displayed increased susceptibility to ER stress during I/R compared with WT. Notably, cardiac mTOR signaling was further increased in Sesn2cKO hearts compared with WT hearts during I/R. In mice with cardiac Sesn2 deficiency, compared with WT, ER lumen was significantly expanded after tunicamycin-induced ER stress, as assessed by transmission electron microscopy. Additionally, pharmacological inhibition of mTOR signaling with rapamycin improved cardiac function after tunicamycin treatment and significantly attenuated the unfolded protein response and apoptosis in WT and Sesn2cKO mice.
    CONCLUSIONS: Sesn2 attenuates cardiac ER stress post-I/R injury via regulation of mTOR signaling. Thus, modulation of the mTOR pathway by Sesn2 could be a critical factor for maintaining cardiac ER homeostasis control during myocardial I/R injury.
    Keywords:  cardiac injury; heart; mTOR signaling; unfolded protein response
    DOI:  https://doi.org/10.1161/JAHA.124.035193
  2. Nat Rev Mol Cell Biol. 2024 Nov 05.
      Cells rely on the endoplasmic reticulum (ER) to fold and assemble newly synthesized transmembrane and secretory proteins - essential for cellular structure-function and for both intracellular and intercellular communication. To ensure the operative fidelity of the ER, eukaryotic cells leverage the unfolded protein response (UPR) - a stress-sensing and signalling network that maintains homeostasis by rebalancing the biosynthetic capacity of the ER according to need. The metazoan UPR can also redirect signalling from cytoprotective adaptation to programmed cell death if homeostasis restoration fails. As such, the UPR benefits multicellular organisms by preserving optimally functioning cells while removing damaged ones. Nevertheless, dysregulation of the UPR can be harmful. In this Review, we discuss the UPR and its regulatory processes as a paradigm in health and disease. We highlight important recent advances in molecular and mechanistic understanding of the UPR that enable greater precision in designing and developing innovative strategies to harness its potential for therapeutic gain. We underscore the rheostatic character of the UPR, its contextual nature and critical open questions for its further elucidation.
    DOI:  https://doi.org/10.1038/s41580-024-00794-0
  3. ACS Omega. 2024 Oct 29. 9(43): 43697-43705
      Lung cancer is one of the leading causes of death. Celastrol is a natural product that has shown anticancer activity but has not yet been applied in clinical settings due to its narrow therapeutic window. In this study, we discovered that celastrol stimulates an abnormal rise in the reactive oxygen species (ROS) level in lung cancer cells and that the ROS scavenger N-acetylcysteine (NAC) could counteract the cell death caused by celastrol. At the same time, celastrol upregulated the expression of cytoprotective transcription factor Nrf2 and its downstream proteins, which are effective in preventing the oxidative damage caused by ROS accumulation. Notably, we found that the overexpression of Nrf2 enhances the tolerance of lung cancer cells to celastrol and that lung cancer cells H460 with a Keap1 mutation are insensitive to celastrol. This indicates that the increase in Nrf2 contributes to the survival of lung cancer cells. Thus, we brought in an Nrf2 inhibitor ML385 to suppress the activation of Nrf2. We found that when ML385 and celastrol were added together the survival rates of lung cancer cells decreased more and the detected ROS level became much higher compared to treatment with celastrol alone. We also discovered that ML385 suppressed the expression of HO-1 and GCLC, which amplified celastrol-induced ATF4/CHOP-dependent endoplasmic reticulum stress (ER stress). Above all, our study found that ML385 enhanced celastrol-induced increases in ROS and ER stress, leading to lung cancer cell death. This research provides a potential strategy for the preclinical investigation of celastrol.
    DOI:  https://doi.org/10.1021/acsomega.4c06152